
 TCS Developer’s SIG
 March 7, 2006

William Mitchell (whm)
Mitchell Software Engineering (.com)

Computing with Pipes
(Just Pipe It!)

Computing with Pipes Slide 2

Overview

Basics of Piping

Some Handy Tools

Ripped from the Headlines

I/O Redirection

Command Substitution

Piping and Editors

Things to Remember

Computing with Pipes Slide 3

The basics of piping

One way to solve a problem is to write a program but some problems can
be solved by simply connecting programs.

Pipes let us connect programs.

An essential notion underlying pipes is that of standard input and standard
output. A pipe connects the standard output of one program to the standard
input of another.

Here is a pipeline that displays users in order by login name:

$ who | sort
dmr pts/73 Feb 15 15:49
drh pts/50 Feb 13 08:18
drh pts/73 Feb 14 11:01
ken pts/50 Feb 13 08:18
ralph pts/47 Feb 12 12:47
rob pts/47 Feb 16 21:47
wnj pts/44 Feb 16 16:42

The standard output of who is piped into the standard input of sort. In
turn the standard output of sort is displayed on the console.

By default, standard input is the keyboard and standard output is the
console.

Note: The UNIX-derived tools used in this presentation can be obtained at
www.cygwin.com.

Computing with Pipes Slide 4

Basics, continued

At hand:

$ who | sort
dmr pts/73 Feb 15 15:49
drh pts/50 Feb 13 08:18
ralph pts/47 Feb 12 12:47
...

The output of sort can be piped into another program.

Here are some programs that read standard input and write to
standard output: (Sometimes called “filters”.)

cut Extract vertical strips from standard input, either by delimited
fields or columns. (Examples: cut -f1 -d" ", cut -c10-20)

uniq Outputs unique lines of (sorted) standard input. With -c,
outputs a count of each unique line.

head Outputs the first N lines of standard input.
(Example: head -20)

wc Outputs lines, "words", characters on standard input.

The customer wants to know:

 How many people are logged in?

 Who has the most logins active?

 Who has been logged in the longest?

Computing with Pipes Slide 5

The grep command

The grep command outputs lines that match a regular expression. A
simple example:

$ grep print *.java
Hello.java: System.out.println("Hello, world!");
args.java: System.out.println("|" + args[i] + "|");
dir.java: void print()
dir.java: System.out.println(entries[i].inode_number + ": " +
dir.java: d.print();
dir.java: d2.print();
lc.java: System.out.println(count);

grep can read standard input:

$ cat *.java | grep print
 System.out.println("Hello, world!");
 System.out.println("|" + args[i] + "|");
 void print()
 System.out.println(entries[i].inode_number + ": " +
 d.print();
 d2.print();
 System.out.println(count);

(Note that cat *.java outputs the contents of each file in turn.)

How do the two outputs above differ? Why?

How could we output only the names of the files that contain “print”?

Computing with Pipes Slide 6

grep, continued

The -l (L) flag causes grep to simply output the names of files that have
an occurrence of the pattern (a regular expression) specified on the
command line:

$ grep -l print *.java
args.java
lc.java

The -v causes inversion—non matching lines are output:

$ grep -v print args.java
public class args {
 public static void main(String args[]) {
 for (int i = 0; i < args.length; i++)
 }
 }

Other handy options (among many):

-w searches for whole "words".
-c outputs a count of matching lines.
-n outputs line numbers, too.
-C outputs surrounding lines (five-line "window" by default).
-e is used like this: 'grep -e -x ...', to search for -x.
-f file reads patterns from a file.

Computing with Pipes Slide 7

grep, continued

The file words contains a list of words, one per line:

$ head words
aardvark
aaron
aback
abacus
abaft
abalone
...

Problems:

How many words contain every vowel, not counting words that contain
a doubled vowel, like “food”?

Produce a sampling of the file by printing every 100 word (or so).th

Computing with Pipes Slide 8

A story ripped from the headlines

The file newcust.out contains debugging output from stress tests of an
ERP system interface being used to create customers. Here are a few
lines:

=== clip 1 ===
/v/ss 530 % sg repeat_s.newcust
DON'T FORGET TO SET inside_firewall and/or run ssh vnet (sleep
15!) !!!!
Replaced underscores, result: 'repeat s.newcust'
Running 's.newcust'
Created customer 261427
Elapsed time 6123ms for 's.newcust'
Warning: server pool exhausted
DON'T FORGET TO SET inside_firewall and/or run ssh vnet (sleep
15!) !!!!
Created customer 261430
Elapsed time 5150ms for 's.newcust'
Warning: server pool exhausted

Problems:

How many customers were made?

Were any duplicate customer IDs created?

Were any sequence numbers skipped?

Was there anything unexpected in the output?

What was the largest/smallest elapsed time?

Computing with Pipes Slide 9

Some curious behavior

The ls (LS) command is like dir—it displays information about files.

What’s wrong with this picture?

$ ls
backup pipes.notes who.1
badsort pipes.nts.last who.bak.icn
lines pipes.nts.wpd who.exe
mostlogins pipes.sli.last who.icn
notes.notes pipes.sli.pdf who.sh
ooee pipes.sli.wpd words
oowords recover1.pdf x
pipes.bug1.wpd s.newcust.022806.1509
pipes.crash2.wpd slides.notes

$ ls | wc -l
25

Problem: Print the name of the most recently modified file in the current
directory.

Computing with Pipes Slide 10

Questions to ponder...

What program characteristics do (or don’t) make it easy to use a
program in a pipeline?

Out of the box, which Windows XP programs can be used in a
pipeline?

Which is better: dir/p or dir | more?

Is piping incompatible with GUIs?

Does an operating system need to support multitasking in order for a
shell to provide piping?

What other sorts of computation does piping remind you of?

Computing with Pipes Slide 11

Redirection operators

Shells commonly support < and > as redirection operators. They allow
standard input and output to be redirected from/to files.

Examples:

$ wc < words
 47958 47958 494442

$ grep oo < words > oowords

$ wc oowords
 859 859 8453 oowords

$ grep oo < words | grep ee > ooee

Note that most, but not all, file processing utilities read standard input if
no file arguments are specified on the command line.

Questions:

Are < and > really needed or are they just syntactic sugar?

Speculate about the result of this command: wc < words words

For simple programs, what is a great benefit of redirection being
provided by a shell?

Computing with Pipes Slide 12

Truth is stranger than fiction

Once upon a time, users of DEC's VMS operating system did output
redirection like this,

$ assign/user sys$output out
$ run program

Contrast with UNIX:

$ program > out

Which do you think came first, VMS or UNIX?

Computing with Pipes Slide 13

Command Substitution

Note: All examples shown previously work on the XP command line. The
following slides explore a facility found only(?) in POSIX shells, such as
bash. (But those shells are available on Windows via Cygwin.)

The command substitution facility provides a way to turn the output of
a command into command-line arguments. Example:

$ cat srcfiles
lc.java
mkall.icn
getpid.c

$ echo $(cat srcfiles)
lc.java mkall.icn getpid.c

(Note: The echo command simply outputs its arguments, all on one line.)

On a command line, the form $(command-line) indicates to run the
enclosed command-line and substitute the whitespace-separated words it
produces for the $(...) construct. The resulting command line is then
executed.

Any number of command substitutions may appear on a command line,
the enclosed commands may be arbitrarily complex, and substitutions may
be nested.

Computing with Pipes Slide 14

Command substitution, continued

Three more examples:

$ ls -l $(cat srcfiles)
-rw-r--r-- 1 whm 74 Sep 1 14:23 getpid.c
-rw-r--r-- 1 whm 360 Aug 14 18:54 lc.java
-rw-r--r-- 1 whm 115 Aug 17 00:57 mkall.icn

$ wc $(cat srcfiles datafiles)
 15 36 360 lc.java
 6 16 115 mkall.icn
 6 13 74 getpid.c
 7 24 452 lc.1
 14 36 259 lc.2
 48 125 1260 total

$ wc $(cat srcfiles datafiles | sort -k 2 -t.)
 7 24 452 lc.1
 14 36 259 lc.2
 6 13 74 getpid.c
 6 16 115 mkall.icn
 15 36 360 lc.java
 48 125 1260 total

Problem: Use more to look through the files in the current directory with
the suffix .icn and that contain the word “reverse”.

Computing with Pipes Slide 15

Command substitution, continued

Note that the echo command and command substitution are inverses:

echo turns arguments into output; command substitution turns output
into arguments.

Consider this:

$ echo a b c
a b c
$ echo $(echo a b c)
a b c

An older, but very commonly used form of command substitution is `...`
(back-quotes):

finger `whoami`
wc `cat srcfiles datafiles | sort +1 -t.`

The older form is a little easier to type, but doesn't nest:

$ echo $(echo $(echo x))
x
$ echo `echo `echo x``
echo x

Computing with Pipes Slide 16

A sip from a firehose

Here’s a UNIX shell script:

$ cat script1
for i in $*
do
 mv -i $i $(echo $i | tr A-Z a-z)
done

Usage:

script1 *.dat

Speculate: What does the script do?

Problem: Write a one-pipline script named mostlogins that displays the
name of the user with the most active login sessions, and the number of
sessions. Example:

$ mostlogins
gifford is logged in 13 times

Hint:

$ printf "x=%d y=%s\n" 5 apples
x=5 y=apples

Computing with Pipes Slide 17

Pipes and editors

Many UNIX-grown editors like Emacs and vi provide facilities to filter
buffer contents through a pipe.

In Emacs, M-| (shell-command-on-region) prompts for a command line
and runs it, supplying the contents of the selected region as standard input.
If an argument is specified for shell-command-on-region, the output
of the command line replaces the region.

Problem:

The file numbers contains the integers from 1 to 1000 in a random
order. Pick a 50-number sequence somewhere in the middle and see
what its sum is.

Practical application:

Imagine a filter named genfmt that reads expressions, one per line, and
generates a Java System.out.format statement that produces labeled
output for the expressions. That can be used to generate code for
debugging. (If only there were a preprocessor in Java...)

Computing with Pipes Slide 18

Things to Remember

This talk introduced a handful of programs that work well in pipelines.
There are many more. Two more that are especially handy are find, for
finding files with various attributes, and sed, a stream editor.

Remember that the man command can be used to display documentation
on program options. On properly configured systems, man -k word looks
for commands whose descriptions contain the specified word.

If you’re on a UNIX/Linux/POSIX system you’ve already got the tools
used in the presentation.

If you’re on Windows, the Cygwin tools work pretty well. Get them at
cygwin.com but before you go after them, be sure to read Section 2,
Setting Up Cygwin, of the Cygwin User’s Guide:

http://www.cygwin.com/cygwin-ug-net/cygwin-ug-net.html

The presenter used to use The MKS Toolkit, another port of UNIX tools
for Windows, but is out of touch with how the current MKS product
compares to Cygwin.

You don’t need to get any tools at all to make use of the notion of
piping:

Simple programs that read from standard input and write to standard
output can be combined to perform significant computations.

Write those programs and Just Pipe it!

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18

