
A Look at Functional Programming with Standard ML Slide 1
William H. Mitchell

 TCS Developer’s SIG

 September 5, 2006

William Mitchell (whm)

Mitchell Software Engineering (.com)

A Look at Functional Programming
with Standard ML

A Look at Functional Programming with Standard ML Slide 2
William H. Mitchell

A Look at Functional Programming with Standard ML Slide 3
William H. Mitchell

Introduction

Imperative programming

Functional programming

A Look at Functional Programming with Standard ML Slide 4
William H. Mitchell

Imperative Programming

Languages such as C, Pascal, and FORTRAN support programming in an imperative style.

Two fundamental characteristics of imperative languages:

"Variables"—data objects whose contents can be changed.

Support for iteration—a “while” control structure, for example.

Java supports object-oriented programming but methods are written in an imperative style.

Here is an imperative solution in Java to sum the integers from 1 to N:

int sum(int n)
{

int sum = 0;

for (int i = 1; i <= n; i++)
sum += i;

return sum;
}

A Look at Functional Programming with Standard ML Slide 5
William H. Mitchell

Functional Programming

Functional programming is based on mathematical functions, which:

• Map values from a domain set into values in a range set

• Can be combined to produce more powerful functions

• Have no side effects

A Look at Functional Programming with Standard ML Slide 6
William H. Mitchell

Functional programming, continued

Recall the imperative solution to sum 1...N:

int sum(int n)
{

int sum = 0;

for (int i = 1; i <= n; i++)
sum += i;

return sum;
}

A solution in a functional style using recursion:

int sum(int n)
{

if (n == 1)
return 1;

else
return n + sum(n - 1);

}

Note that there is no assignment or looping.

A Look at Functional Programming with Standard ML Slide 7
William H. Mitchell

ML Basics

A little background

Interacting with ML

val declarations

Simple data types and operators

The conditional expression

A Look at Functional Programming with Standard ML Slide 8
William H. Mitchell

ML—Background

Developed at Edinburgh University in the mid '70s by Mike Gordon, Robin Milner, and Chris
Wadsworth.

Designed specifically for writing proof strategies for the Edinburgh LCF theorem prover. A
particular goal was to have an excellent datatype system.

The name “ML” stands for "Meta Language".

ML is not a pure functional language. It does have some imperative features.

There is a family of languages based on ML. These slides use Standard ML of New Jersey
(SML/NJ).

The SML/NJ home page is www.smlnj.org.

A Look at Functional Programming with Standard ML Slide 9
William H. Mitchell

ML is not object-oriented

ML is not designed for object-oriented programming:

• There is no analog for the common notion of a class.

• Executable code is contained in functions, which may be associated with a structure but
are often “free floating”.

• Instead of “invoking a method” or “sending a message to an object”, we “call
functions”.

Example: A Java expression such as xList.f(y) might be expressed as f(xList, y) in ML.

• There is no notion of inheritance but ML does support polymorphism in various ways.

The OCaml (Objective Caml) language is derived from ML and has support for object-
oriented programming.

A Look at Functional Programming with Standard ML Slide 10
William H. Mitchell

Interacting with ML

SML/NJ is has a "read-eval-print" loop:

% sml
Standard ML of New Jersey, v110.57...
- 10 + ~20;
val it = ~10 : int

- 3.4 * 5.6 - 7.8;
val it = 11.24 : real

- size("testing");
val it = 7 : int

- "apple" <> "orange";
val it = true : bool

- Math.sqrt(2.0); (* the sqrt function in the Math "structure" *)
val it = 1.41421356237 : real

- Math.pi;
val it = 3.14159265359 : real

A Look at Functional Programming with Standard ML Slide 11
William H. Mitchell

Naming values—the val declaration

A val declaration can be used to specify a name for the value of an expression. The name
can then be used to refer to the value.

- val radius = 2.0;
val radius = 2.0 : real

- radius;
val it = 2.0 : real

- val area = Math.pi * radius * radius;
val area = 12.5663706144 : real

- area;
val it = 12.5663706144 : real

Do not think of val as creating a variable.

It can be said that the above adds bindings for radius and area to our environment.

A Look at Functional Programming with Standard ML Slide 12
William H. Mitchell

val declarations, continued

It is not an error to use an existing name in a subsequent val declaration:

- val x = 1;
val x = 1 : int

- val x = "abc";
val x = "abc" : string

- x;
val it = "abc" : string

Technically, the environment contains two bindings for x but only the latter binding is
accessible.

A Look at Functional Programming with Standard ML Slide 13
William H. Mitchell

The conditional expression

ML has an if-then-else construct. Example:

- if 1 < 2 then 3 else 4;
val it = 3 : int

This construct is called the “conditional expression”.

It evaluates a boolean expression and then depending on the result, evaluates the expression
on the then “arm” or the else “arm”. The value of that expression becomes the result of the
conditional expression.

A conditional expression can be used anywhere an expression can be used:

- val x = 3;
val x = 3 : int

- x + (if x < 5 then x*x else x+x);
val it = 12 : int

How does ML’s if-then-else compare to that in the C family (C / C++ / Java /C#)?

A Look at Functional Programming with Standard ML Slide 14
William H. Mitchell

The char type

It is possible to make a one-character string but there is also a separate type, char, to
represent single characters.

A char literal consists of a pound sign followed by a single character, or escape sequence,
enclosed in double-quotes. Example, and some char-related functions:

- #"a";
val it = #"a" : char

- ord(#"b");
val it = 98 : int

- str(chr(97)) ^ str(chr(98)); (* ^ (caret) is string concatenation *)
val it = "ab" : string

A Look at Functional Programming with Standard ML Slide 15
William H. Mitchell

Functions

Type consistency

Defining functions

Type deduction

Type variables

Loading source with use

A Look at Functional Programming with Standard ML Slide 16
William H. Mitchell

A prelude to functions: type consistency

ML requires that expressions be type consistent. A simple violation is to try to add a real and
an int:

- 3.4 + 5;
Error: operator and operand don't agree (tycon mismatch)
 operator domain: real * real
 operand: real * int
 in expression:
 + : overloaded (3.4,5)

(tycon stands for “type constructor”.)

Type consistency is a cornerstone of the design philosophy of ML.

There are no automatic type conversions in ML.

A Look at Functional Programming with Standard ML Slide 17
William H. Mitchell

Type consistency, continued

Another context where type consistency appears is in the conditional operator: the
expressions in both "arms" must have the same type.

Example:

- if "a" < "b" then 3 else 4.0;
Error: rules don't agree (tycon mismatch)
 expected: bool -> int
 found: bool -> real
 rule:
 false => 4.0

A Look at Functional Programming with Standard ML Slide 18
William H. Mitchell

Function definition basics

A simple function definition:

- fun double(n) = n * 2;
val double = fn : int -> int

The body of a function is a single expression. The return value of the function is the value of
that expression. There is no “return” statement.

The text "fn" is used to indicate that the value defined is a function, but the function itself is
not displayed.

The text "int -> int" indicates that the function takes an integer argument and produces an
integer result. ("->" is read as "to".)

Note that the type of the argument and the type produced by the function are not specified.
Instead, type deduction was used.

A Look at Functional Programming with Standard ML Slide 19
William H. Mitchell

Function definition basics, continued

Another example of type deduction:

- fun f(a, b, c, d) =
 if a = b then c + 1 else
 if a > b then c else b + d;
val f = fn : int * int * int * int -> int

The type of a function is described with a type expression.

The symbols * and -> are both type operators. * is left-associative and has higher

precedence than ->, which is right-associative.

The type operator * is read as “cross”.

What is a possible sequence of steps used to determine the type of f?

A Look at Functional Programming with Standard ML Slide 20
William H. Mitchell

Type variables and polymorphic functions

In some cases ML expresses the type of a function using one or more type variables.

A type variable expresses type equivalences among parameters and between parameters and
the return value.

A function that simply returns its argument:

- fun f(a) = a;
val f = fn : 'a -> 'a

The identifier 'a is a type variable. The type of the function indicates that it takes a
parameter of any type and returns a value of that same type, whatever it is.

- f(1);
val it = 1 : int
- f(1.0);
val it = 1.0 : real
- f("x");
val it = "x" : string

’a is read as “alpha”, ’b as “beta”, etc.

A Look at Functional Programming with Standard ML Slide 21
William H. Mitchell

Type variables and polymorphic functions, continued

At hand:

- fun f(a) = a;
val f = fn : 'a -> 'a

The function f is said to be polymorphic because it can operate on a value of any type.

A polymorphic function may have many type variables:

- fun third(x, y, z) = z;
val third = fn : 'a * 'b * 'c -> 'c

- third(1, 2.0, "three");
val it = "three" : string

A function's type may be a combination of fixed types and type variables. A single type
variable is sufficient for a function to be considered polymorphic.

A polymorphic function has an infinite number of possible instances.

A Look at Functional Programming with Standard ML Slide 22
William H. Mitchell

Equality types

An equality type variable is a type variable that ranges over equality types. Instances of
values of equality types, such as int, string, and char can be tested for equality. Example:

- fun equal(a,b) = a = b;
val equal = fn : ''a * ''a -> bool

The function equal can be called with any type that can be tested for equality. ''a is an
equality type variable, distinguished by the presence of two apostrophes, instead of just one.

- equal(1,10);
val it = false : bool

- equal("xy", "x" ^ "y");
val it = true : bool

A Look at Functional Programming with Standard ML Slide 23
William H. Mitchell

More-interesting types

Tuples

Pattern matching

Lists

List processing functions

A Look at Functional Programming with Standard ML Slide 24
William H. Mitchell

Tuples

A tuple is an ordered aggregation of two or more values of possibly differing types.

- val a = (1, 2.0, "three");
val a = (1,2.0,"three") : int * real * string

- (1, 1);
val it = (1,1) : int * int

- (it, it);
val it = ((1,1),(1,1)) : (int * int) * (int * int)

- ((1,1), "x", (2.0,2.0));
val it = ((1,1),"x",(2.0,2.0)) : (int * int) * string * (real * real)

A Look at Functional Programming with Standard ML Slide 25
William H. Mitchell

Tuples, continued

A function can return a tuple as its result:

- fun around(n) = (n-1, n+1);
val around = fn : int -> int * int

- around(5);
val it = (4,6) : int * int

- fun pair(x, y) = (x, y);
val pair = fn : 'a * 'b -> 'a * 'b

- pair(1, "one");
val it = (1,"one") : int * string

- pair(it, it);
val it = ((1,"one"),(1,"one")): (int * string) * (int * string)

A Look at Functional Programming with Standard ML Slide 26
William H. Mitchell

Tuples, continued

A function to put two integers in ascending order:

- fun order(x, y) = if x < y then (x, y) else (y, x);
val order = fn : int * int -> int * int

- order(3,4);
val it = (3,4) : int * int

- order(10,1);
val it = (1,10) : int * int

A Look at Functional Programming with Standard ML Slide 27
William H. Mitchell

Pattern matching

Thus far, function parameter lists appear conventional but in fact the “parameter list” is a
pattern specification.

Recall order:

fun order(x, y) = if x < y then (x, y) else (y, x)

In fact, order has only one parameter: an (int * int) tuple.

The pattern specification (x, y) indicates that the name x is bound to the first value of the
two-tuple that order is called with. The name y is bound to the second value.

Consider this:

- val x = (7, 3);
val x = (7,3) : int * int

- order x;
val it = (3,7) : int * int

A Look at Functional Programming with Standard ML Slide 28
William H. Mitchell

Pattern matching, continued

In fact, all functions in our current ML world take one argument!

The syntax for a function call in ML is this:

function value

In other words, two values side by side are considered to be a function call.

Examples:

- val x = (7,3);
val x = (7,3) : int * int

- swap x;
val it = (3,7) : int * int

- size "testing";
val it = 7 : int

A Look at Functional Programming with Standard ML Slide 29
William H. Mitchell

Pattern matching, continued

Patterns provide a way to bind names to components of values.

Imagine a 2x2 matrix represented by a pair of 2-tuples:

- val m = ((1, 2),
 (3, 4));
val m = ((1,2),(3,4)) : (int * int) * (int * int)

Elements of the matrix can be extracted with pattern matching:

- fun lowerRight((ul,ur),(ll,lr)) = lr;
val lowerRight = fn : ('a * 'b) * ('c * 'd) -> 'd

- lowerRight m;
val it = 4 : int

Underscores can be used in a pattern to match values of no interest. An underscore creates
an anonymous binding.

- fun upperLeft ((x, _), (_, _)) = x;
val upperLeft = fn : ('a * 'b) * ('c * 'd) -> 'a

A Look at Functional Programming with Standard ML Slide 30
William H. Mitchell

Pattern matching, continued

The left hand side of a val expression is in fact a pattern specification:

- val (x, y, z) = (1, (2, 3), (4, ("five", 6.0)));
val x = 1 : int
val y = (2,3) : int * int
val z = (4,("five",6.0)) : int * (string * real)

A Look at Functional Programming with Standard ML Slide 31
William H. Mitchell

Pattern matching, continued

Functions may be defined using a series of patterns that are tested in turn against the
argument value. If a match is found, the corresponding expression is evaluated to produce the
result of the call. Also, literal values can be used in a pattern.

- fun f(1) = 10
 | f(2) = 20
 | f(n) = n;
val f = fn : int -> int

Usage:

- f(1);
val it = 10 : int

- f(2);
val it = 20 : int

- f(3);
val it = 3 : int

A Look at Functional Programming with Standard ML Slide 32
William H. Mitchell

Pattern matching, continued

One way to sum the integers from 0 through N:

fun sum(n) = if n = 0 then 0 else n + sum(n-1);

A better way:

fun sum(0) = 0
 | sum(n) = n + sum(n - 1);

A Look at Functional Programming with Standard ML Slide 33
William H. Mitchell

Lists

A list is an ordered collection of values of the same type.

One way to make a list is to enclose a sequence of values in square brackets:

- [1, 2, 3];
val it = [1,2,3] : int list

- ["just", "a", "test"];
val it = ["just","a","test"] : string list

- [it, nil, [], it]; (* nil and [] are two ways to specify an empty list *)
val it = [["just","a","test"],[],[],["just","a","test"]] : string list list

- [(1, "one"), (2, "two")];
val it = [(1,"one"),(2,"two")] : (int * string) list

Note the type, int list, for example. list is another type operator. It has higher precedence
than both * and ->.

A Look at Functional Programming with Standard ML Slide 34
William H. Mitchell

Heads and tails

The hd and tl functions produce the head and tail of a list, respectively. The head is the first
element. The tail is the list without the first element.

- val x = [1, 2, 3, 4];
val x = [1,2,3,4] : int list

- hd x;
val it = 1 : int

- tl x;
val it = [2,3,4] : int list

- tl it;
val it = [3,4] : int list

- hd(tl(tl x));
val it = 3 : int

Both hd and tl, as all functions in our ML world, are applicative. They produce a value but
don’t change their argument.

 Unless we use the imperative features of ML, which we won’t be studying!1

A Look at Functional Programming with Standard ML Slide 35
William H. Mitchell

An important point

• Lists can't be modified. There is no way to add or remove list elements, or change the
value of an element. (Ditto for tuples and strings.)

• Ponder this: Just as you cannot change an integer's value, you cannot change the value

of a string, list, or tuple.

In ML, we never change anything. We only make new things.1

A Look at Functional Programming with Standard ML Slide 36
William H. Mitchell

Simple functions with lists

The built-in length function produces the number of elements in a list:

- length [20, 10, 30];
val it = 3 : int

- length [];
val it = 0 : int

Problem: Write a function len that behaves like length. What type will it have?

Here's a start... (Note the use of a case instead of an "if".)

fun len [] = 0
 | len L =

Problem: Write a function sum that calculates the sum of the integers in a list:

- sum([4,1,2,3]);
val it = 10 : int

A Look at Functional Programming with Standard ML Slide 37
William H. Mitchell

Cons’ing up lists

A list may be constructed with the :: (“cons”) operator, which forms a list from a compatible
head and tail:

- 1::[2];
val it = [1,2] : int list

- 1::2::3::[];
val it = [1,2,3] : int list

- "x"::nil;
val it = ["x"] : string list

What’s an example of an incompatible head and tail?

 Note the type of the operator:

- op:: ; (Just prefix the operator with “op”)
val it = fn : 'a * 'a list -> 'a list

This operator is right associative.

A Look at Functional Programming with Standard ML Slide 38
William H. Mitchell

Cons, continued

Problem: Write a function m_to_n(m, n) that produces a list of the integers from m through
m inclusive. (Assume that m <= n.)

- m_to_n(1, 5);
val it = [1,2,3,4,5] : int list

- m_to_n(~3, 3);
val it = [~3,~2,~1,0,1,2,3] : int list

- m_to_n(1, 0);
val it = [] : int list

A start:

fun m_to_n(m, n) = if m > n then [] else

A Look at Functional Programming with Standard ML Slide 39
William H. Mitchell

Lists, strings, and characters

The explode and implode functions convert between strings and lists of characters:

- explode("boom");
val it = [#"b", #"o", #"o", #"m"] : char list

- implode([#"o", #"o", #"p", #"s", #"!"]);
val it = "oops!" : string

- explode("");
val it = [] : char list

- implode([]);
val it = "" : string

What are the types of implode and explode?

Problem: Write a function reverse(s), which reverses the string s. Hint: rev reverses a list.

A Look at Functional Programming with Standard ML Slide 40
William H. Mitchell

Pattern matching with lists

In a pattern, :: can be used to describe a value. Example:

fun len ([]) = 0
 | len (x::xs) = 1 + len(xs)

The first pattern is the basis case and matches an empty list.

The second pattern requires a list with at least one element. The head is bound to x and the
tail is bound to xs.

Problem: Noting that x is never used, improve the above implementation.

Problem: Write a function drop2(L) that returns a copy of L with the first two values
removed. If the length of L is less than 2, return L.

A Look at Functional Programming with Standard ML Slide 41
William H. Mitchell

Try it!

Problem: Write a function member(v, L) that produces true iff v is contained in the list L.

- member(7, [3, 7, 15]);
val it = true : bool

Problem: Write a function contains(s, c) that produces true iff the char c appears in the
string s.

Problem: Write a function maxint(L) that produces the largest integer in the list L. Raise the
exception Empty if the list has no elements.

A Look at Functional Programming with Standard ML Slide 42
William H. Mitchell

A Look at Functional Programming with Standard ML Slide 43
William H. Mitchell

 Larger Examples

expand

travel

tally

A Look at Functional Programming with Standard ML Slide 44
William H. Mitchell

expand

Consider a function that expands a string in a trivial packed representation:

- expand("x3y4z");
val it = "xyyyzzzz" : string

- expand("123456");
val it = "244466666" : string

Fact: The digits 0 through 9 have the ASCII codes 48 through 57. A character can be
converted to an integer by subtracting from it the ASCII code for 0. Therefore,

fun ctoi(c) = ord(c) - ord(#"0")

fun is_digit(c) = #"0" <= c andalso c <= #"9"

- ctoi(#"5");
val it = 5 : int

- is_digit(#"x");
val it = false : bool

A Look at Functional Programming with Standard ML Slide 45
William H. Mitchell

expand, continued

One more function:

fun repl(x, 0) = []
 | repl(x, n) = x::repl(x, n-1)

What does it do?

Finally, expand:

fun expand(s) =
 let
 fun expand'([]) = []
 | expand'([c]) = [c]
 | expand'(c1::c2::cs) =
 if is_digit(c1) then
 repl(c2, ctoi(c1)) @ expand'(cs)
 else
 c1 :: expand'(c2::cs)
 in
 implode(expand'(explode(s)))
 end;

A Look at Functional Programming with Standard ML Slide 46
William H. Mitchell

travel

Imagine a robot that travels on an infinite grid of cells. The robot's movement is directed by
a series of one character commands: n, e, s, and w.

In this problem we will consider a function travel of type string -> string that moves the
robot about the grid and determines if the robot ends up where it started (i.e., did it get
home?) or elsewhere (did it get lost?).

1

2

R

If the robot starts in square R the command string nnnn leaves the robot in the square marked
1. The string nenene leaves the robot in the square marked 2. nnessw and news move the
robot in a round-trip that returns it to square R.

A Look at Functional Programming with Standard ML Slide 47
William H. Mitchell

travel, continued

Usage:

- travel("nnnn");
val it = "Got lost" : string

- travel("nnessw");
val it = "Got home" : string

How can we approach this problem?

A Look at Functional Programming with Standard ML Slide 48
William H. Mitchell

travel, continued

One approach:

1. Map letters into integer 2-tuples representing X and Y displacements on a Cartesian
plane.

2. Sum the X and Y displacements to yield a net displacement.

Example:

Argument value: "nnee"
Mapped to tuples: (0,1) (0,1) (1,0) (1,0)
Sum of tuples: (2,2)

Another:

Argument value: "nnessw"
Mapped to tuples: (0,1) (0,1) (1,0) (0,-1) (0,-1) (-1,0)
Sum of tuples: (0,0)

A Look at Functional Programming with Standard ML Slide 49
William H. Mitchell

travel, continued

A couple of building blocks:

fun mapmove(#"n") = (0,1)
 | mapmove(#"s") = (0,~1)
 | mapmove(#"e") = (1,0)
 | mapmove(#"w") = (~1,0)

fun sum_tuples([]) = (0,0)
 | sum_tuples((x,y)::ts) =

let
val (sumx, sumy) = sum_tuples(ts)

in
(x+sumx, y+sumy)

end

A Look at Functional Programming with Standard ML Slide 50
William H. Mitchell

travel, continued

The grand finale:

fun travel(s) =
 let
 fun mk_tuples([]) = []
 | mk_tuples(c::cs) = mapmove(c)::mk_tuples(cs)

 val tuples = mk_tuples(explode(s))

 val disp = sum_tuples(tuples)

 in
if disp = (0,0) then

"Got home"
else

"Got lost"
 end

Note that mapmove and sum_tuples are defined at the outermost level. mk_tuples is
defined inside a let. Why?

A Look at Functional Programming with Standard ML Slide 51
William H. Mitchell

Larger example: tally

Consider a function tally that prints the number of occurrences of each character in a string:

- tally("a bean bag");
a 3
b 2
 2
g 1
n 1
e 1
val it = () : unit

Note that the characters are shown in order of decreasing frequency.

How can this problem be approached?

A Look at Functional Programming with Standard ML Slide 52
William H. Mitchell

tally, continued

Implementation:

(*
 * inc_entry(c, L)
 *
 * L is a list of (char * int) tuples that indicate how many times a
 * character has been seen.
 *
 * inc_entry() produces a copy of L with the count in the tuple
 * containing the character c incremented by one. If no tuple with
 * c exists, one is created with a count of 1.
 *)
 fun inc_entry(c, []) = [(c, 1)]
 | inc_entry(c, (char, count)::entries) =
 if c = char then
 (char, count+1)::entries
 else
 (char, count)::inc_entry(c, entries)

A Look at Functional Programming with Standard ML Slide 53
William H. Mitchell

tally, continued

(* mkentries(s) calls inc_entry() for each character in the string s *)

fun mkentries(s) =
 let
 fun mkentries'([], entries) = entries
 | mkentries'(c::cs, entries) =
 mkentries'(cs, inc_entry(c, entries))
 in
 mkentries'(explode s, [])
 end

(* fmt_entries(L) prints, one per line, the (char * int) tuples in L *)

fun fmt_entries(nil) = ""
 | fmt_entries((c, count)::es) =
 str(c) ^ " " ^ Int.toString(count) ^ "\n" ^ fmt_entries(es)

A Look at Functional Programming with Standard ML Slide 54
William H. Mitchell

tally, continued

(*
 * sort, insert, and order_pair work together to provide an insertion sort
 *
 * insert(v, L) produces a copy of the int list L with the int v in the
 * proper position. Values in L are descending order.
 *
 * sort(L) produces a sorted copy of L by using insert() to place
 * values at the proper position.
 *
 *)
fun insert(v, []) = [v]
 | insert(v, x::xs) =
 if order_pair(v,x) then v::x::xs
 else x::insert(v, xs)

fun sort([]) = []
 | sort(x::xs) = insert(x, sort(xs))

fun order_pair((_, v1), (_, v2)) = v1 > v2

A Look at Functional Programming with Standard ML Slide 55
William H. Mitchell

tally, continued

With all the pieces in hand, tally itself is a straightforward sequence of calls.

(*
 * tally: make entries, sort the entries, and print the entries
 *)
fun tally(s) = print(fmt_entries(sort(mkentries(s))))

A Look at Functional Programming with Standard ML Slide 56
William H. Mitchell

A Look at Functional Programming with Standard ML Slide 57
William H. Mitchell

More with functions

Functions as values

Functions as arguments

A flexible sort

Curried functions

A Look at Functional Programming with Standard ML Slide 58
William H. Mitchell

Functions as values

A fundamental characteristic of a functional language is that functions are values that can be
used as flexibly as values of other types.

In essence, the fun declaration creates a function value and binds it to a name. Additional
names can be bound to a function value with a val declaration.

- fun double(n) = 2*n;
val double = fn : int -> int

- val twice = double;
val twice = fn : int -> int

- twice;
val it = fn : int -> int

- twice 3;
val it = 6 : int

Note that unlike values of other types, no representation of a function is shown. Instead, "fn"
is displayed. (Think flexibly: What could be shown instead of only fn?)

A Look at Functional Programming with Standard ML Slide 59
William H. Mitchell

Functions as values, continued

Just as values of other types can appear in lists, so can functions:
It should be no surprise that functions can be elements of lists and tuples:

- (hd, 1, size, "x", length);
val it = (fn,1,fn,"x",fn)
 : ('a list -> 'a) * int * (string -> int) * string * ('b list -> int)

- val convs = [floor, ceil, trunc];
val convs = [fn,fn,fn] : (real -> int) list

- [it];
val it = [(fn,1,fn,"x",fn)]
 : (('a list -> 'a) * int * (string -> int) * string * ('b list -> int)) list

Using the "op" syntax we can work with operators as functions:

- op+;
val it = fn : int * int -> int

- op+(3,4);
val it = 7 : int

A Look at Functional Programming with Standard ML Slide 60
William H. Mitchell

Functions as arguments

A function may be passed as an argument to a function.

This function simply applies a given function to a value:

- fun apply(F,v) = F(v);
val apply = fn : ('a -> 'b) * 'a -> 'b

Usage:

- apply(size, "abcd");
val it = 4 : int

- apply(swap, (3,4));
val it = (4,3) : int * int

- apply(length, apply(m_to_n, (5,7)));
val it = 3 : int

A function that uses other functions as values is said to be a higher-order function.

Could apply be written in Java? In C?

A Look at Functional Programming with Standard ML Slide 61
William H. Mitchell

Functions as arguments, continued

Here is a function that applies a function to every element of a list and produces a list of the
results:

fun applyToAll(_, []) = []
 | applyToAll(f, x::xs) = f(x)::applyToAll(f, xs);

Usage:

- applyToAll(double, [10, 20, 30]);
val it = [20,40,60] : int list

- applyToAll(real, iota(5)); (* iota(n) produces [1,2,...,n] *)
val it = [1.0,2.0,3.0,4.0,5.0] : real list

- applyToAll(length, [it, it@it]);
val it = [5,10] : int list

We'll see later that applyToAll is really the map function from the library, albeit in a slightly
different form.

A Look at Functional Programming with Standard ML Slide 62
William H. Mitchell

A flexible sort

Recall order(ed)_pair, insert, and sort from the tally example. They work together to sort a
(char * int) list.

fun ordered_pair((_, v1), (_, v2)) = v1 > v2

fun insert(v, []) = [v]
 | insert(v, x::xs) = if ordered_pair(v,x) then v::x::xs else x::insert(v, xs)

fun sort([]) = []
 | sort(x::xs) = insert(x, sort(xs))

Consider eliminating ordered_pair and instead supplying a function to test whether the
values in a 2-tuple are the desired order.

A Look at Functional Programming with Standard ML Slide 63
William H. Mitchell

A flexible sort, continued

Here are versions of insert and sort that use a function to test the order of elements in a 2-
tuple:

fun insert(v, [], isInOrder) = [v]
 | insert(v, x::xs, isInOrder) =
 if isInOrder(v,x) then v::x::xs
 else x::insert(v, xs, isInOrder)

fun sort([], isInOrder) = []
 | sort(x::xs, isInOrder) = insert(x, sort(xs, isInOrder), isInOrder)

Types:

- insert;
val it = fn : 'a * 'a list * ('a * 'a -> bool) -> 'a list

- sort;
val it = fn : 'a list * ('a * 'a -> bool) -> 'a list

What C library function does this version of sort resemble?

A Look at Functional Programming with Standard ML Slide 64
William H. Mitchell

A flexible sort, continued

Sorting integers:

- fun intLessThan(a,b) = a < b;
val intLessThan = fn : int * int -> bool

- sort([4,10,7,3], intLessThan);
val it = [3,4,7,10] : int list

We might sort (int * int) tuples based on the sum of the two values:

fun sumLessThan((a1, a2), (b1, b2)) = a1 + a2 < b1 + b2;

- sort([(1,1), (10,20), (2,~2), (3,5)], sumLessThan);
val it = [(2,~2),(1,1),(3,5),(10,20)] : (int * int) list

Problem: Sort an int list list based on the largest value in each of the int lists. Sorting

[[3,1,2],[50],[10,20],[4,3,2,1]]

would yield

[[3,1,2],[4,3,2,1],[10,20],[50]]

A Look at Functional Programming with Standard ML Slide 65
William H. Mitchell

Curried functions

It is possible to define a function in curried form:

- fun add x y = x + y; (Two arguments, x and y, not (x,y), a 2-tuple)
val add = fn : int -> int -> int

The function add can be called like this:

- add 3 5;
val it = 8 : int

Note the type of add: int -> (int -> int) (Remember that -> is right-associative.)

What add 3 5 means is this:

- (add 3) 5;
val it = 8 : int

add is a function that takes an int and produces a function that takes an int and produces an
int. add 3 produces a function that is then called with the argument 5.

In general, a call like f x y z means (((f x) y) z).

A Look at Functional Programming with Standard ML Slide 66
William H. Mitchell

Curried functions, continued

For reference: fun add x y = x + y. The type is int -> (int -> int).

More interesting than add 3 5 is this:

- add 3;
val it = fn : int -> int

- val plusThree = add 3;
val plusThree = fn : int -> int

The name plusThree is bound to a function that is a partial instantiation of add. (a.k.a.
partial application)

- plusThree 5;
val it = 8 : int

- plusThree 20;
val it = 23 : int

- plusThree (plusThree 20);
val it = 26 : int

A Look at Functional Programming with Standard ML Slide 67
William H. Mitchell

Curried functions, continued

For reference:

fun add x y = x + y

As a conceptual model, think of this expression:

val plusThree = add 3

as producing a result similar to this:

fun plusThree(y) = 3 + y

The idea of a partially applicable function was first described by Moses Schönfinkel. It was
further developed by Haskell B. Curry. Both worked wtih David Hilbert in the 1920s.

What prior use have you made of partially applied functions?

A Look at Functional Programming with Standard ML Slide 68
William H. Mitchell

Curried functions, continued

For reference:

- fun add x y = x + y;
val add = fn : int -> int -> int

- val plusThree = add 3;
val plusThree = fn : int -> int

Analogy: A partially instantiated function is like a machine with a hardwired input value.

This model assumes that data flows from left to right.

A Look at Functional Programming with Standard ML Slide 69
William H. Mitchell

Curried functions, continued

Here is a curried implementation of m_to_n (slide 76):

- fun m_to_n m n = if m > n then [] else m :: (m_to_n (m+1) n);
val m_to_n = fn : int -> int -> int list

Usage:

- m_to_n 1 7;
val it = [1,2,3,4,5,6,7] : int list

Problem: Create the function iota. (iota(3) produces [1,2,3].)

A Look at Functional Programming with Standard ML Slide 70
William H. Mitchell

Curried functions, continued

Functions in the ML standard library (the "Basis") are often curried.

String.isSubstring returns true iff its first argument is a substring of the second argument:

- String.isSubstring;
val it = fn : string -> string -> bool

- String.isSubstring "tan" "standard";
val it = true : bool

We can create a partial application that returns true iff a string contains "tan":

- val hasTan = String.isSubstring "tan";
val hasTan = fn : string -> bool

- hasTan "standard";
val it = true : bool

- hasTan "library";
val it = false : bool

A Look at Functional Programming with Standard ML Slide 71
William H. Mitchell

Curried functions, continued

In fact, the curried form is syntactic sugar. An alternative to fun add x y = x + y is this:

- fun add x =
 let

 fun add' y = x + y
in
 add'
end

val add = fn : int -> int -> int (Remember associativity: int -> (int -> int))

A call such as add 3 produces an instance of add' where x is bound to 3. That instance is
returned as the value of the let expression.

- add 3;
val it = fn : int -> int

- it 4;
val it = 7 : int

- add' 3 4;
val it = 7 : int

A Look at Functional Programming with Standard ML Slide 72
William H. Mitchell

A Look at Functional Programming with Standard ML Slide 73
William H. Mitchell

List processing idioms with functions

Mapping

Anonymous functions

Predicate based functions

Reduction

travel, revisited

A Look at Functional Programming with Standard ML Slide 74
William H. Mitchell

Mapping

The applyToAll function seen earlier applies a function to each element of a list and
produces a list of the results. There is a built-in function called map that does the same
thing.

- map;
val it = fn : ('a -> 'b) -> 'a list -> 'b list

- map size ["just", "testing"];
val it = [4,7] : int list

- map sumInts [[1,2,3],[5,10,20],[]];
val it = [6,35,0] : int list

Mapping is one of the idioms of functional programming.

There is no reason to write a function that performs an operation on each value in a list.
Instead create a function to perform the operation on a single value and then map that
function onto lists of interest.

A Look at Functional Programming with Standard ML Slide 75
William H. Mitchell

Mapping, continued

Consider a partial application of map:

- val sizes = map size;
val sizes = fn : string list -> int list

- sizes ["ML", "Ruby", "Prolog"];
val it = [2,4,6] : int list

- sizes ["ML", "Icon", "C++", "Prolog"];
val it = [2,4,3,6] : int list

A Look at Functional Programming with Standard ML Slide 76
William H. Mitchell

Mapping with curried functions

It is common to map with a partial application:

- val addTen = add 10;
val addTen = fn : int -> int

- map addTen (m_to_n 1 10);
val it = [11,12,13,14,15,16,17,18,19,20] : int list

- map (add 100) (m_to_n 1 10);
val it = [101,102,103,104,105,106,107,108,109,110] : int list

The partial application "plugs in" one of the addends. The resulting function is then called
with each value in the list in turn serving as the other addend.

A Look at Functional Programming with Standard ML Slide 77
William H. Mitchell

Mapping with anonymous functions

Here's another way to define a function:

- val double = fn(n) => n * 2;
val double = fn : int -> int

The expression being evaluated, fn(n) => n * 2, is a simple example of a match expression.
It provides a way to create a function "on the spot".

If we want to triple the numbers in a list, instead of writing a triple function we might do this:

- map (fn(n) => n * 3) [3, 1, 5, 9];
val it = [9,3,15,27] : int list

The function created by fn(n) => n * 3 never has a name. It is an anonymous function. It is
created, used, and discarded.

The term match expression is ML-specific. A more general term for an expression that
defines a nameless function is a lambda expression.

A Look at Functional Programming with Standard ML Slide 78
William H. Mitchell

Predicate-based functions

The built-in function List.filter applies function F to each element of a list and produces a list
of those elements for which F produces true. Here's one way to write filter:

- fun filter F [] = []
 | filter F (x::xs) = if (F x) then x::(filter F xs)

 else (filter F xs);
val filter = fn : ('a -> bool) -> 'a list -> 'a list

It is said that F is a predicate—inclusion of a list element in the result is predicated on
whether F returns true for that value.

Consider the following.

- val f = List.filter (fn(n) => n mod 2 = 0);
val f = fn : int list -> int list

- f [5,10,12,21,32];
val it = [10,12,32] : int list

- length (f (m_to_n 1 100));
val it = 50 : int

A Look at Functional Programming with Standard ML Slide 79
William H. Mitchell

Predicate-based functions, continued

The function String.tokens uses a predicate to break a string into "tokens":

- Char.isPunct;
val it = fn : char -> bool

- String.tokens Char.isPunct "a,bc:def.xyz";
val it = ["a","bc","def","xyz"] : string list

Problem: What characters does Char.isPunct consider to be punctuation?

A Look at Functional Programming with Standard ML Slide 80
William H. Mitchell

Real-world application: A very simple grep

The UNIX grep program searches files for lines that contain specified text. Imagine a very
simple grep in ML:

- grep;
val it = fn : string -> string list -> unit list

- grep "sort" ["all.sml","flexsort.sml"];
all.sml:fun sort1([]) = []
all.sml: | sort1(x::xs) =
all.sml: insert(x, sort1(xs))
flexsort.sml:fun sort([], isInOrder) = []
flexsort.sml: | sort(x::xs, isInOrder) = insert(x, sort(xs, isInOrder), isInOrder)
val it = [(),()] : unit list

We could use SMLofNJ.exportFn to create a file that is executable from the UNIX
command line, just like the real grep.

A Look at Functional Programming with Standard ML Slide 81
William H. Mitchell

A simple grep, continued

Implementation

fun grepAFile text file =
 let

 val inputFile = TextIO.openIn(file);
val fileText = TextIO.input(inputFile);
val lines = String.tokens (fn(c) => c = #"\n") fileText
val linesWithText = List.filter (String.isSubstring text) lines
val _ = TextIO.closeIn(inputFile);

in
print(concat(map (fn(s) => file ^ ":" ^ s ^ "\n") linesWithText))

end;

fun grep text files = map (grepAFile text) files;

Look: No loops, no variables, no recursion (at this level)!

A Look at Functional Programming with Standard ML Slide 82
William H. Mitchell

Reduction of lists

Another idiom is reduction of a list by repeatedly applying a binary operator to produce a
single value. Here is a simple reduction function:

- fun reduce F [] = raise Empty
 | reduce F [x] = x
 | reduce F (x::xs) = F(x, reduce F xs)
val reduce = fn : ('a * 'a -> 'a) -> 'a list -> 'a

Usage:

- reduce op+ [3,4,5,6];
val it = 18 : int

What happens:

op+(3, reduce op+ [4,5,6])
op+(4, reduce op+ [5,6])

op+(5, reduce op+ [6])

Or,
op+(3, op+(4, op+(5,6)))

A Look at Functional Programming with Standard ML Slide 83
William H. Mitchell

Reduction, continued

More examples:

- reduce op^ ["just", "a", "test"];
val it = "justatest" : string

- reduce op* (iota 5);
val it = 120 : int

Problem: How could a list like [[1,2],[3,4,5],[6]] be turned into [1,2,3,4,5,6]?

A Look at Functional Programming with Standard ML Slide 84
William H. Mitchell

Reduction, continued

Because reduce is curried, we can create a partial application:

- val concat = reduce op^; (* mimics built-in concat *)
val concat = fn : string list -> string

- concat ["xyz", "abc"];
val it = "xyzabc" : string

- val sum = reduce op+ ;
val sum = fn : int list -> int

- sum(iota 10);
val it = 55 : int

- val max = reduce (fn(x,y) => if x > y then x else y);
val max = fn : int list -> int

- max [5,3,9,1,2];
val it = 9 : int

Another name for reduction is "folding".

A Look at Functional Programming with Standard ML Slide 85
William H. Mitchell

travel, revisited

Here's a version of travel that uses mapping and reduction instead of explicit recursion:

fun dirToTuple(#"n") = (0,1)
 | dirToTuple(#"s") = (0,~1)
 | dirToTuple(#"e") = (1,0)
 | dirToTuple(#"w") = (~1,0)

fun addTuples((x1 , y1), (x2, y2)) = (x1 + x2, y1 + y2);

fun travel(s) =
 let
 val tuples = map dirToTuple (explode s)
 val displacement = reduce addTuples tuples
 in
 if displacement = (0,0) then "Got home"
 else "Got lost"
 end

How confident are we that it is correct?

A Look at Functional Programming with Standard ML Slide 86
William H. Mitchell

A Look at Functional Programming with Standard ML Slide 87
William H. Mitchell

Even more with functions

Composition

Manipulation of operands

A Look at Functional Programming with Standard ML Slide 88
William H. Mitchell

The composition operator (o)

There is a composition operator in ML:

- op o; (* lower-case "Oh" *)
val it = fn : ('a -> 'b) * ('c -> 'a) -> 'c -> 'b

Two functions can be composed into a new function:

- val strlen = length o explode;
val strlen = fn : string -> int

- strlen "abc";
val it = 3 : int

Analogy: Composition is like bolting machines together.

A Look at Functional Programming with Standard ML Slide 89
William H. Mitchell

Composition, continued

Problem: Using composition, create a function to reverse a string.

Problem: Create a function to reverse each string in a list of strings and reverse the order of
strings in the list. (Example: f ["one","two","three"] would produce ["eerht","owt","eno"].)

Problem: Compute the sum of the odd numbers between 1 and 100, inclusive. Use only
composition and applications of op+, iota, isEven, reduce, filter, and not (bool -> bool).

A Look at Functional Programming with Standard ML Slide 90
William H. Mitchell

Another way to understand composition

Composition can be explored by using
functions that simply echo their call.

Example:

- fun f(s) = "f(" ^ s ^ ")";
val f = fn : string -> string

- f("x");
val it = "f(x)" : string

Two more:

fun g(s) = "g(" ^ s ^ ")";

fun h(s) = "h(" ^ s ^ ")";

Compositions:

- val fg = f o g;
val fg = fn : string -> string

- fg("x");
val it = "f(g(x))" : string

- val ghf = g o h o f;
val ghf = fn : string -> string

- ghf("x");
val it = "g(h(f(x)))" : string

- val q = fg o ghf;
val q = fn : string -> string

- q("x");
val it = "f(g(g(h(f(x)))))" : string

A Look at Functional Programming with Standard ML Slide 91
William H. Mitchell

"Computed" composition

Because composition is just an operator and functions are just values, we can write a function
that computes a composition. compN f n composes f with itself n times:

- fun compN f 1 = f
 | compN f n = f o compN f (n-1);
val compN = fn : ('a -> 'a) -> int -> 'a -> 'a

Usage:

- val f = compN double 3;
val f = fn : int -> int

- f 10;
val it = 80 : int

- compN double 10 1;
val it = 1024 : int

- map (compN double) (iota 5);
val it = [fn,fn,fn,fn,fn] : (int -> int) list

Could we create compN using folding?

A Look at Functional Programming with Standard ML Slide 92
William H. Mitchell

Manipulation of operands

Consider this function:

- fun c f x y = f (x,y);
val c = fn : ('a * 'b -> 'c) -> 'a -> 'b -> 'c

Usage:

- c op+ 3 4;
val it = 7 : int

- c op^ "a" "bcd";
val it = "abcd" : string

What is it doing?

What would be produced by the following partial applications?

c op+

c op^

A Look at Functional Programming with Standard ML Slide 93
William H. Mitchell

Manipulation of operands, continued

Here's the function again, with a revealing name:

- fun curry f x y = f (x,y);
val curry = fn : ('a * 'b -> 'c) -> 'a -> 'b -> 'c

Consider:

- op+;
val it = fn : int * int -> int

- val add = curry op+;
val add = fn : int -> int -> int

- val addFive = add 5;
val addFive = fn : int -> int

- map addFive (iota 10);
val it = [6,7,8,9,10,11,12,13,14,15] : int list

- map (curry op+ 5) (iota 10);
val it = [6,7,8,9,10,11,12,13,14,15] : int list

A Look at Functional Programming with Standard ML Slide 94
William H. Mitchell

Manipulation of operands, continued

For reference:

- fun curry f x y = f (x,y);
val curry = fn : ('a * 'b -> 'c) -> 'a -> 'b -> 'c

For a moment, think of a partial application as textual substitution:

val add = curry op+ is like fun add x y = op+(x, y)

val addFive = curry op+ 5 is like fun addFive y = op+(5, y)

Bottom line:

If we have a function that takes a 2-tuple, we can easily produce a curried version of the
function.

A Look at Functional Programming with Standard ML Slide 95
William H. Mitchell

Manipulation of operands, continued

Recall repl from slide 165:

- repl("abc", 4);
val it = "abcabcabcabc" : string

Let's create some partial applications of a curried version of it:

- val stars = curry repl "*";
val stars = fn : int -> string

- val arrows = curry repl " ---> ";
val arrows = fn : int -> string

- stars 10;
val it = "**********" : string

- arrows 5;
val it = " ---> ---> ---> ---> ---> " : string

- map arrows (iota 3);
val it = [" ---> "," ---> ---> "," ---> ---> ---> "] : string list

A Look at Functional Programming with Standard ML Slide 96
William H. Mitchell

Manipulation of operands, continued

Sometimes we have a function that is curried but we wish it were not curried. For example, a
function of type 'a -> 'b -> 'c that would be more useful if it were 'a * 'b -> 'c.

Consider a curried function:

- fun f x y = g(x,y*2);
val f = fn : int -> int -> int

Imagine that we'd like to map f onto an (int * int) list. We can't! (Why?)

Problem: Write an uncurry function so that this works:

- map (uncurry f) [(1,2), (3,4), (5,6)];

Important: The key to understanding functions like curry and uncurry is that without
partial application they wouldn't be of any use.

A Look at Functional Programming with Standard ML Slide 97
William H. Mitchell

Manipulation of operands, continued

The partial instantiation curry repl "x" creates a function that produces some number of "x"s,
but suppose we wanted to first supply the replication count and then supply the string to
replicate.

Example:

- five; (Imagine that 'five s' will call 'repl(s, 5)'.)
val it = fn : string -> string

- five "*";
val it = "*****" : string

- five "<x>";
val it = "<x><x><x><x><x>" : string

A Look at Functional Programming with Standard ML Slide 98
William H. Mitchell

Manipulation of operands, continued

Consider this function:

- fun swapArgs f x y = f y x;
val swapArgs = fn : ('a -> 'b -> 'c) -> 'b -> 'a -> 'c

Usage:

- fun cat s1 s2 = s1 ^ s2;
val cat = fn : string -> string -> string

- val f = swapArgs cat;
val f = fn : string -> string -> string

- f "a" "b";
val it = "ba" : string

- map (swapArgs (curry op^) "x") ["just", "a", "test"];
val it = ["justx","ax","testx"] : string list

A Look at Functional Programming with Standard ML Slide 99
William H. Mitchell

Manipulation of operands, continued

- val curried_repl = curry repl;
val curried_repl = fn : string -> int -> string

- val swapped_curried_repl = swapArgs curried_repl;
val swapped_curried_repl = fn : int -> string -> string

- val five = swapped_curried_repl 5;
val five = fn : string -> string

- five "*";
val it = "*****" : string

- five "<->";
val it = "<-><-><-><-><->" : string

Or,
- val five = swapArgs (curry repl) 5;
val five = fn : string -> string

- five "xyz";
val it = "xyzxyzxyzxyzxyz" : string

A Look at Functional Programming with Standard ML Slide 100
William H. Mitchell

Example: optab

Function optab(F, N, M) prints a table showing the result of F(n,m) for each value of n and
m from 1 to N and M, respectively. F is always an int * int -> int function.

Example:

- optab;
val it = fn : (int * int -> int) * int * int -> unit

- optab(op*, 5, 7);
 1 2 3 4 5 6 7
 1 1 2 3 4 5 6 7
 2 2 4 6 8 10 12 14
 3 3 6 9 12 15 18 21
 4 4 8 12 16 20 24 28
 5 5 10 15 20 25 30 35
val it = () : unit

A Look at Functional Programming with Standard ML Slide 101
William H. Mitchell

optab, continued

val repl = concat o xrepl;

fun rightJustify width value =

repl(" ", width-size(value)) ^ value

fun optab(F, nrows, ncols) =
 let
 val rj = rightJustify 4 (* assumes three-digit results at most *)

 fun intsToRow (L) = concat(map (rj o Int.toString) L) ^ "\n"

 val cols = iota ncols

 fun mkrow nth = intsToRow(nth::(map (curry F nth) cols))

 val rows = map mkrow (iota nrows)
 in
 print((rj "") ^ intsToRow(cols) ^ concat(rows))
 end

- optab(add, 3, 4);
 1 2 3 4
 1 2 3 4 5
 2 3 4 5 6
 3 4 5 6 7
val it = () : unit

A Look at Functional Programming with Standard ML Slide 102
William H. Mitchell

A Look at Functional Programming with Standard ML Slide 103
William H. Mitchell

The datatype declaration

A Look at Functional Programming with Standard ML Slide 104
William H. Mitchell

New types with datatype

New types can be defined with the datatype declaration. Example:

- datatype Shape =
 Circle of real
 | Square of real
 | Rectangle of real * real
 | Point;
datatype Shape
 = Circle of real | Point | Rectangle of real * real | Square of real

This defines a new type named Shape. An instance of a Shape is a value in one of four
forms:

A Circle, consisting of a real (the radius)

A Square, consisting of a real (the length of a side)

A Rectangle, consisting of two reals (width and height)

A Point, which has no data associated with it. (Debatable, but good for an example.)

A Look at Functional Programming with Standard ML Slide 105
William H. Mitchell

Shape: a new type

At hand:

datatype Shape =
 Circle of real
 | Square of real
 | Rectangle of real * real
 | Point

This declaration defines four constructors. Each constructor specifies one way that a Shape
can be created.

Examples of constructor invocation:

- val r = Rectangle (3.0, 4.0);
val r = Rectangle (3.0,4.0) : Shape

- val c = Circle(5.0);
val c = Circle 5.0 : Shape

- val p = Point;
val p = Point : Shape

A Look at Functional Programming with Standard ML Slide 106
William H. Mitchell

Shape, continued

A function to calculate the area of a Shape:

- fun area(Circle radius) = Math.pi * radius * radius
 | area(Square side) = side * side
 | area(Rectangle(width, height)) = width * height
 | area(Point) = 0.0;
val area = fn : Shape -> real

Usage:

- val r = Rectangle(3.4,4.5);
val r = Rectangle (3.4,4.5) : Shape

- area(r);
val it = 15.3 : real

- area(Circle 1.0);
val it = 3.14159265359 : real

Speculate: What will happen if the case for Point is omitted from area?

A Look at Functional Programming with Standard ML Slide 107
William H. Mitchell

Shape, continued

A Shape list can be made from any combination of Circle, Point, Rectangle, and Square
values:

- val c = Circle(2.0);
val c = Circle 2.0 : Shape

- val shapes = [c, Rectangle (1.5, 2.5), c, Point, Square 1.0];
val shapes = [Circle 2.0,Rectangle (1.5,2.5),Circle 2.0,Point,Square 1.0]
 : Shape list

We can use map to calculate the area of each Shape in a list:

- map area shapes;
val it = [12.0,78.5398163397,0.0] : real list

What does the following function do?

- val f = (foldr op+ 0.0) o (map area);
val f = fn : Shape list -> real

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107

