
UML, Slide 1 ©2003 by William H. Mitchell

UML, the Unified Modeling Language

William H. Mitchell (whm)

Mitchell Software Engineering (.com)

UML, Slide 2 ©2003 by William H. Mitchell

What is UML?

"The Unified Modeling Language (UML) is a language for
specifying, visualizing, constructing, and documenting the artifacts
of software systems, as well as for business modeling and other
non-software systems".— OMG UML Specification

"UML is a graphical notation for modeling various aspects of
software systems." — whm

UML, Slide 3 ©2003 by William H. Mitchell

Why use UML?

Two questions, really:

Why use a graphical notation of any sort?

Facilitates construction of models that in turn can be used to:

Reason about system behavior

Present proposed designs to others

Document key elements of design for future understanding

Which graphical notation should be used?

UML has become the de-facto standard for modeling object-
oriented systems.

UML is extensible and method-independent.

UML is not perfect, but it's good enough.

UML, Slide 4 ©2003 by William H. Mitchell

The Origins of UML

Object-oriented programming reached the mainstream of
programming in the late 1980's and early 1990's.

The rise in popularity of object-oriented programming was
accompanied by a profusion of object-oriented analysis and design
methods, each with its own graphical notation.

Three OOA/D gurus, and their methods, rose to prominence

Grady Booch — The Booch Method
James Rumbaugh, et al. — Object Modeling Technique
Ivar Jacsobson — Objectory

In 1994, Booch and Rumbaugh, then both at Rational, started
working on a unification of their methods. A first draft of their
Unified Method was released in October 1995.

In 1996, (+/-) Jacobson joined Booch and Rumbaugh at Rational;
the name UML was coined.

In 1997 the Object Management Group (OMG) accepted UML as
an open and industry standard visual modeling language for object-
oriented systems.

Current version of UML is 1.4.

Official specification is available at www.omg.org (566 pages)

http://www.omg.org

UML, Slide 5 ©2003 by William H. Mitchell

UML Diagram Types

There are several types of UML diagrams:

Use-case Diagram
Shows actors, use-cases, and the relationships between them.

Class Diagram
Shows relationships between classes and pertinent information
about classes themselves.

Object Diagram
Shows a configuration of objects at an instant in time.

Interaction Diagrams
Show an interaction between a group of collaborating objects.
Two types: Collaboration diagram and sequence diagram

Package Diagram
Shows system structure at the library/package level.

State Diagram
Describes behavior of instances of a class in terms of states,
stimuli, and transitions.

Activity Diagram
Very similar to a flowchart—shows actions and decision
points, but with the ability to accommodate concurrency.

Deployment Diagram
Shows configuration of hardware and software in a distributed
system.

UML, Slide 6 ©2003 by William H. Mitchell

Class diagram basics

Consider a simple class to represent a point on a Cartesian plane:

class Point {
 private double x, y;

 Point(double x, double y) { this.x = x; this.y = y; }
 public double getX() { return x; }
 public double getY() { return y; }

 public double getDistFromOrigin() { ... }
 }

The corresponding UML class diagram:

Three compartments are shown: class name, attributes, operations.

Member visibility is indicated with + (public) and - (private); these
are called visibility adornments.

UML, Slide 7 ©2003 by William H. Mitchell

Class diagram basics, continued

UML permits the detail of a diagram to vary based on the intended
use. The compartments with attributes and/or operations can be
omitted.

Here is a less detailed diagram for the Point class:

Here's a version with only the operations shown:

UML, Slide 8 ©2003 by William H. Mitchell

Class diagram basics, continued

Here is a class that represents rectangles using a point, a width, and
a height:

class Rectangle {
 private double width, height;
 private Point ULCorner;

 public Rectangle(Point ULC, double w, double h) { ... }
 public double getArea() { ... }
 public Point getCenter() { ... }
 }

A class diagram showing the relationship between Rectangle and
Point:

The link between Rectangle and Point indicates:

• There is a field in Rectangle that references a Point.

• Point has no knowledge of Rectangle. (We'd expect no
references to Rectangle in the source for Point.)

• Point's role with respect to Rectangle is that of "ULCorner".

UML, Slide 9 ©2003 by William H. Mitchell

Class diagrams—aggregation

When a class may reference several instances of another class, the
link between the two classes is shown with a diamond on the end of
the aggregate class.

Here is a class diagram showing the relationships between Triangle,
Polygon, Rectangle, and Point classes:

It can be seen that:

• An instance of Triangle references three instances of Point.

• An instance of Polygon references at least one, and a
potentially unlimited number of Point instances.

• Aside from Triangle, Polygon, and Rectangle knowing of
Point, no classes have any knowledge of any other classes.

Note that "3" and "1..*" are multiplicity specifications.

UML, Slide 10 ©2003 by William H. Mitchell

Aggregation, continued

Another example of aggregation:

UML, Slide 11 ©2003 by William H. Mitchell

Object diagrams

An object diagram shows a configuration of objects at a point in
time.

After execution of this code,

Point corner = new Point(3,4);
Rectangle r = new Rectangle(corner, 5, 10);

the situation can be depicted with this object diagram:

If desired, various elements may be omitted:

Note that an underlined name in the name compartment is the
indication that an object is at hand.

UML, Slide 12 ©2003 by William H. Mitchell

Collaboration diagrams

Interaction diagrams show a series of method invocations among a
group of objects.

One type of interaction diagram is a collaboration diagram, which
is essentially an object diagram augmented with method
invocations.

Consider the following code:

Point p = new Point(3,4);
Rectangle r = new Rectangle(p, 5, 10);
double a = r.getArea();

Here is the corresponding collaboration diagram:

Note that a constructor call is depicted by sending a create()
message to an object that in fact comes into existence as a result of
the constructor call.

UML, Slide 13 ©2003 by William H. Mitchell

Collaboration diagrams, continued

Imagine a draw(Canvas) method for Rectangle and a
drawRect(x, y, w, h) method in Canvas. Here is a
collaboration diagram that shows the method invocations for
drawing a Rectangle:

The corresponding code:

class Rectangle {
 ...
 public void draw(Canvas c) {
 double x = ULCorner.getX();
 double y = ULCorner.getY();

 c.drawRect(x, y, width, height);
 }
 ...
 }

UML, Slide 14 ©2003 by William H. Mitchell

Sequence diagrams

The other type of UML interaction diagram is the sequence
diagram.

A sequence diagram presents the same information shown on a
collaboration diagram but in a different format.

Here is a sequence diagram for the rectangle drawing scenario:

The dashed vertical lines are lifelines.

The vertical boxes on the lifelines are activations.

UML, Slide 15 ©2003 by William H. Mitchell

Class diagrams—inheritance

A simple example of inheritance in Java:

class Clock {
 private Time currentTime;
 public void setTime(Time t) { ... }
 public Time getTime() { ... }
 }

class AlarmClock extends Clock {
 private Time alarmTime;
 private boolean alarmOn;
 public void setAlarmTime(Time t) { ... }
 public void setAlarm(boolean on_off) { ... }
 }

Expressed in UML:

UML, Slide 16 ©2003 by William H. Mitchell

Inheritance, continued

Abstract classes and methods are indicated as being such by
italicizing the name of the class or method:

The code: (Rectangle not shown)

abstract class Shape {
 private String name;
 Shape(String name) { ... }
 public abstract double getArea();
 public abstract double getPerimeter();
 }

class Circle extends Shape {
 private double radius;
 Circle(String name, double radius) { ... }
 public double getArea() { ... }
 public double getPerimeter() { ... }
 }

If drawing by hand, add text such as "{abstract}" or just "{a}"
following the class or method name to indicate an abstract member.

UML, Slide 17 ©2003 by William H. Mitchell

Details on dependency and association

If a change in a class B may affect a class A, then it is said that A
depends on B.

In Java, creating an instance of a class, or passing a class instance
as a parameter creates dependency:

class A {
 void f() {
 ...
 B b = new B();
 ...use methods in B...
 }

 void g(B b) {
 ...use methods in B...
 }
 }

Class A depends on class B:

In Booch's notation, it would be said that A uses-a B.

Two typical implications of class A depending on class B:

• A definition of B, such as a C++ header file or a Java class
file, is required to compile A.

• A change in B requires A to be rebuilt.

UML, Slide 18 ©2003 by William H. Mitchell

Details on dependency and association, cont.

An association is unidirectional if a class C has an attribute of class
type D, but D makes no use of C:

class C {
 ...
 private D d1;
 }

class D {
 ...no usage of C...
 }

This diagram shows that there is navigation (visibility) from C to D,
but not from D to C:

Association implies dependency.

In Booch's notation it would be said that C has-a D.

UML, Slide 19 ©2003 by William H. Mitchell

Details on dependency and association, cont.

If two classes have attributes referencing objects of each other's
type, a bidirectional association exists:

class E {
 ...
 private F f1;
 }

class F {
 ...
 private E e1;
 }

A bidirectional association, with navigability from each class to the
other, is shown by a line with no arrowheads:

UML, Slide 20 ©2003 by William H. Mitchell

Example: InfoMagic

Imagine a simple command line tool, called InfoMagic, to manage
"notes"—textual information about topics of interest to the user.
Notes are stored in a filesystem-like hierarchy where folders may
contain any number of notes and any number of folders.

Users may enter one of several commands at the prompt:

new folder <name>
Make a new folder in the current folder.

new note

Create a new note and add it to the list of notes in the
current folder.

list
Display a list of notes and folders in the current folder.
Notes are displayed with a sequence number but that
number is not associated with the note itself.

edit <note#>
Edit the text of the specified note using a text editor.

delete <note#>
Delete the specified note

to <folder>[/<folder>/...]
Change to a new folder using a UNIX-style path
specification

UML, Slide 21 ©2003 by William H. Mitchell

InfoMagic: Class diagram

UML, Slide 22 ©2003 by William H. Mitchell

InfoMagic: Object diagram

Here is an object diagram that shows a potential collection of
Folders and Notes:

Recall this relationship:

UML, Slide 23 ©2003 by William H. Mitchell

InfoMagic: Interaction diagrams

Collaboration diagram for "Program start-up":

Collaboration diagram for "to folder/folder/...":

UML, Slide 24 ©2003 by William H. Mitchell

InfoMagic: interaction diagrams, continued

Collaboration diagram for "list":

Sequence diagram for "add":

UML, Slide 25 ©2003 by William H. Mitchell

InfoMagic: interaction diagrams, continued

Collaboration diagram for "edit":

UML, Slide 26 ©2003 by William H. Mitchell

O-O design with UML—"Elevator Training"

Here's a featherweight object-oriented design method based on
UML:

1. For each system operation identify pertinent objects and
devise an interaction between them, sketching it as a
collaboration diagram.

2. Derive a class diagram from the set of collaboration
diagrams.

3. Analyze the relationships shown in the class diagram and
refine the design, repeating steps 1, 2, and 3, as necessary.

4. Code it!

UML, Slide 27 ©2003 by William H. Mitchell

Effective use of UML

• Take time to understand the notation but don't make a career
of it.

• Keep in mind the purpose of a particular diagram and use
appropriate detail for that purpose.

• Beware of arguments about notional choice, such as
aggregation versus composition, that are ultimately
inconsequential.

• Don't fill design documents with unnecessary diagrams.

• Don't get carried away with drawing tools.

• Customers usually aren't too interested in a beautiful set of
diagrams. What they want is good software.

UML, Slide 28 ©2003 by William H. Mitchell

Recommended reading

If you're going to buy just one book on UML...

UML and the Unified Process, by Jim Arlow and Ila Neustadt.
2002. Published by Addison-Wesley. ISBN 0-201-77060-1.

A pretty good reference but a little disappointing considering the
authors...

The Unified Modeling Language User Guide, by Grady Booch
et al. 1999. Published by Addison-Wesley. ISBN 0-201-
57168-4.

Concise, but a little bit pricey for the size...

UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 2nd Edition, by Martin Fowler and
Kendall Scott. 1999. Published by Addison-Wesley. ISBN 0-
201-65783-X

A great book on object-oriented design that makes extensive use of
UML...

Applying UML and Patterns, by Craig Larman. 2002.
Published by Prentice Hall PTR. ISBN 0-13-092529-1

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28

