
GNU Emacs Lisp Programming Slide 1
Copyright © 2001-2008 by William H. Mitchell

William H. Mitchell (whm)
Mitchell Software Engineering (.com)

Programming with
GNU Emacs Lisp

GNU Emacs Lisp Programming Slide 2
Copyright © 2001-2008 by William H. Mitchell

GNU Emacs Lisp Programming Slide 3
Copyright © 2001-2008 by William H. Mitchell

Emacs Lisp

Introduction

A little history

GNU Emacs Lisp Programming Slide 4
Copyright © 2001-2008 by William H. Mitchell

Introduction

GNU Emacs is a full-featured text editor that contains a complete Lisp system. Emacs Lisp is used
for a variety of things:

• Complete applications such as mail and news readers, IM clients, calendars, games, and
browsers of various sorts.

• Improved interfaces for applications such as make, diff, FTP, shells, and debuggers.

• Language-specific editing support.

• Management of interaction with version control systems such as CVS, Perforce,
SourceSafe, and StarTeam.

• Implementation of Emacs itself—a substantial amount of Emacs is written in Emacs
Lisp.

And more...

 Don't quote me!1

GNU Emacs Lisp Programming Slide 5
Copyright © 2001-2008 by William H. Mitchell

A little history1

Lisp:
John McCarthy is the father of Lisp.

The name Lisp comes from LISt Processing Language.

Initial ideas for Lisp were formulated in 1956-1958; some were implemented in FLPL
(FORTRAN-based List Processing Language).

The first Lisp implementation, for application to AI problems, took place 1958-1962 at MIT.

There are many dialects of Lisp. Perhaps the most commonly used dialect is Common Lisp,
which includes CLOS, the Common Lisp Object System.

See http://www-formal.stanford.edu/jmc/history/lisp/lisp.html for some interesting details
on the early history of Lisp.

GNU Emacs Lisp Programming Slide 6
Copyright © 2001-2008 by William H. Mitchell

A little history, continued

Emacs

The first Emacs was a set of macros written in 1976 by Richard Stallman on MIT's ITS
(Incompatible Timesharing System) for the TECO editor. Emacs was an acronym for Editor
MACroS.

Next, a full editor, also called Emacs, was written by Stallman in Lisp for DECSystem-10/20.

Then, James Gosling at Carnegie-Mellon, developed a UNIX version in C with "Mock Lisp"
as the embedded language.

Stallman wrote GNU Emacs as the first step in the GNU project, in the early 1980s.

GNU Emacs is available on most platforms.

GNU Emacs Lisp Programming Slide 7
Copyright © 2001-2008 by William H. Mitchell

Lisp basics

Running Emacs Lisp

Lisp expressions

Comparisons and boolean values

Variables

Lists

Functions

let / while / cond

Higher-order functions

Code that writes code

GNU Emacs Lisp Programming Slide 8
Copyright © 2001-2008 by William H. Mitchell

Running Emacs Lisp

GNU Emacs is usually named emacs.

This material is based on GNU Emacs 20.6.1. Use ESC-x emacs-version to check the

version number.

A convenient way to use Emacs Lisp interactively is with ESC-x ielm:

*** Welcome to IELM *** Type (describe-mode) for help.
ELISP>

Use C-X C-C (control-X then control-C) to exit Emacs.

GNU Emacs Lisp Programming Slide 9
Copyright © 2001-2008 by William H. Mitchell

Lisp expressions

The syntax of Lisp is among the simplest of all programming languages. Lisp has only one type of
expression—the function call. Function calls have this form:

(function expr1 expr2 ... exprN)

Examples:

ELISP> (+ 3 4)
7

ELISP> (length "abcd")
4

ELISP> (concat "just" "testing")
"justtesting"

ELISP> (type-of "testing")
string

ELISP> (buffer-size)
217

Lisp programs are primarily composed of function calls.

GNU Emacs Lisp Programming Slide 10
Copyright © 2001-2008 by William H. Mitchell

Lisp expressions, continued

When it makes sense for a function to have an arbitrary number of operands, Lisp typically permits
it:

ELISP> (+ 1 2 3)
6

ELISP> (* 1 2 3 4 5)
120

ELISP> (- 10 1 2 3 4 5 6 7 8 9 10)
-45

ELISP> (concat "a" "bc" "def" "ghij")
"abcdefghij"

GNU Emacs Lisp Programming Slide 11
Copyright © 2001-2008 by William H. Mitchell

Lisp expressions, continued

Complex expressions are built up by nesting:

ELISP> (* (+ 3 4) (- 5 3)) ; Most languages: (3+4)*(5-3)
14

ELISP> (1+ (length "abcd"))
5

ELISP> (substring (concat "abc" "def") 1 3)
"bc"

GNU Emacs Lisp Programming Slide 12
Copyright © 2001-2008 by William H. Mitchell

Comparisons and boolean values

There are a number of functions that perform comparisons. They typically return t if successful

and nil if not:

ELISP> (< 1 2)
t

ELISP> (= (* 3 4) (+ 4 4 4))
t

ELISP> (string= "9798" (concat ?a ?b))
t

ELISP> (numberp "xyz")
nil

The not function inverts t or nil:

ELISP> (not nil)
t

not considers everything except nil to be t

GNU Emacs Lisp Programming Slide 13
Copyright © 2001-2008 by William H. Mitchell

Variables

Lisp variable names can include many special characters but by convention variable names are
typically limited to alphanumeric characters, underscores, and hyphens.

setq is used to assign a value to a variable. It returns the value assigned.

ELISP> (setq sum 0)
0

ELISP> (setq new-value 10)
10

ELISP> (setq sum (+ sum new-value))
10

ELISP> (setq <x> 7)
7

ELISP> (setq x\ x "abc")
"abc"

ELISP> (setq \ (concat <x> x\ x <x>))
"7abc7"

GNU Emacs Lisp Programming Slide 14
Copyright © 2001-2008 by William H. Mitchell

Lists

The fundamental data structure in Lisp is the list. Here are some examples of lists:

(1 2 3 4)

(x y z)

(+ 3 4)

(car ford)

(setq y (* (dot) (dot)))

("just" a ('test) (((here) for) example))

(cdr '(1 2 3))

Lists can represent program code or data; the meaning is dependent on context.

GNU Emacs Lisp Programming Slide 15
Copyright © 2001-2008 by William H. Mitchell

Lists, continued

By default, ielm assumes that a list is a function call to be evaluated:

ELISP> (setq x (1 2 3 4))
*** Eval error *** Invalid function: 1

Quoting a list suppresses evaluation:

ELISP> (setq x '(1 2 3 4)) ; Note: only a leading apostrophe
(1 2 3 4)

ELISP> (setq complex '(1 2 (a b c (A B) d f) 3))
(1 2
 (a b c

 (A B)
 d f)

 3)

ielm uses indentation to show the structure of lists but lists are typically shown in a more compact

form on these slides.

 The names "car" and "cdr" are said to have originated with the initial Lisp implementation, on an IBM 7090. "CAR" stands2

for Contents of Address part of Register and "CDR" stands for Contents of Decrement part of Register.

GNU Emacs Lisp Programming Slide 16
Copyright © 2001-2008 by William H. Mitchell

Lists, continued

Lisp popularized the head/tail representation of lists that is now common. The car function yields

the head of a list:

ELISP> (setq x '(1 2 3 4))
(1 2 3 4)

ELISP> (car x)
1

The cdr (say "could-er") function produces the tail of a list:2

ELISP> (cdr x)
(2 3 4)

ELISP> (cdr (cdr x))
(3 4)

ELISP> (car (cdr '(x y z)))
y

GNU Emacs Lisp Programming Slide 17
Copyright © 2001-2008 by William H. Mitchell

Lists, continued

The cons function creates a list from a head and a tail:

ELISP> (cons 1 '(a b c))
(1 a b c)

ELISP> (setq L (cons '(a b c) '(1 2 3)))
((a b c) 1 2 3)

ELISP> (car L)
(a b c)

ELISP> (cdr L)
(1 2 3)

If the second argument of cons is not a list, a dotted pair is created:

ELISP> (cons 1 2)
(1 . 2)

ELISP> (cdr (cons 1 2))
2

GNU Emacs Lisp Programming Slide 18
Copyright © 2001-2008 by William H. Mitchell

Lists, continued

In Lisp, the empty list is called nil and can be named with () or nil:

ELISP> ()
nil

ELISP> (cons 1 nil)
(1)

ELISP> (cdr '(1))
nil

ELISP> (cons 1 (cons 2 (cons 3 (cons (+ 1 1 1 1) nil))))
(1 2 3 4)

GNU Emacs Lisp Programming Slide 19
Copyright © 2001-2008 by William H. Mitchell

Some built-in list functions

Here is a sampling of the many built-in functions that operate on lists:

ELISP> (length '(a b c))
3

ELISP> (nth 1 '(a b c))
b

ELISP> (member 20 '(10 20 30))
(20 30)

ELISP> (reverse '(1 2 3))
(3 2 1)

ELISP> (list '(a b) 1 2 '(10 20 30))
((a b) 1 2 (10 20 30))

ELISP> (append '(a b) 1 2 '(10 20 30))
(a b 49 50 10 20 30)

ELISP> (equal '(1 2 3) (cons 1 '(2 3)))
t

GNU Emacs Lisp Programming Slide 20
Copyright © 2001-2008 by William H. Mitchell

Functions

The special form defun is used to define functions. The general form is this:

(defun name arguments documentation expr1 expr2 ... exprN)

The result of exprN is the return value of the function.

A function to calculate the area of a circle:

(defun area (radius)
 "Calculates the area of circle with RADIUS"
 (* pi radius radius)) ; 'pi' is a built-in variable

Usage:

ELISP> (area 5)
78.53981633974483

defun is called a special form because it doesn't evaluate all of its arguments.

What would it mean to interpret the above defun as a plain function call?

Have we seen another "function" that in fact must be a special form?

GNU Emacs Lisp Programming Slide 21
Copyright © 2001-2008 by William H. Mitchell

Functions, continued

The documentation for a function can be accessed with describe-function:

ELISP> (describe-function 'area)

area is a Lisp function in `c:/y/whm/372/el/all.el'.
(area RADIUS)

Calculates the area of circle with RADIUS

The expression 'area creates a symbol. There is no trailing quote—the atom ends at the next

lexical element, a parenthesis in this case. Strings, like "area" can often be used interchangeably

with symbols although not in this case.

A function can be defined interactively in ielm but the more common thing to do is to create a file.

By convention, Emacs Lisp source files have the suffix .el. (E-L)

A source file can be loaded with ESC-x load-file.

GNU Emacs Lisp Programming Slide 22
Copyright © 2001-2008 by William H. Mitchell

Functions, continued

Consider a function linelen that computes the distance between two points represented as

dotted-pairs:

ELISP> (linelen '(0 . 0) '(1 . 1))
1.4142135623730951

Definition:

(defun linelen (p1 p2)
(setq x1 (car p1))
(setq y1 (cdr p1))
(setq x2 (car p2))
(setq y2 (cdr p2))
(setq xdiff (- x2 x1))
(setq ydiff (- y2 y1))

 (sqrt (+ (* xdiff xdiff) (* ydiff ydiff))) ; return value
)

How would you rate the readability of the above code?

GNU Emacs Lisp Programming Slide 23
Copyright © 2001-2008 by William H. Mitchell

A scoping issue

An unfortunate side-effect of linelen is that it creates or changes variables that are visible

outside of linelen. Example:

ELISP> (setq x1 "This is x1")
"This is x1"

ELISP> (linelen '(0 . 0) '(1 . 1))
1.4142135623730951

ELISP> x1
0 (Because of (setq x1 (car p1)) in linelen!)

Java uses static scoping for variables. For example, the scope of an instance variable is all the
methods of a class. The scope of a parameter is the body of the associated method. The scope of a
variable declared in a for loop is that loop.

Emacs Lisp uses dynamic scoping. When a variable is referenced it looks for the most recently
created instance of the variable and uses it. If a variable being set with setq doesn't exist, it is

created.

GNU Emacs Lisp Programming Slide 24
Copyright © 2001-2008 by William H. Mitchell

let

The special form let creates variable bindings that have a limited lifetime.

Here is the general form:

(let (varExpr1 varExpr2 ...) expr1 expr2 ... exprN)

Each varExpr is either a variable or a list containing a variable and an initializing expression.

The specified variables are created and initialized, possibly hiding existing variable bindings.
expr1 through exprN is evaluated. The value of the let is the value of exprN. When the let

is complete, the variable bindings are erased, making any previous bindings visible again.

Here is a contrived example:

(defun f (x y)
 (let ((xsq (* x x)) (y2 (+ y y)) sum)
 (setq sum (+ xsq y2))
 (format "xsq = %d, y2 = %d, sum = %d" xsq y2 sum)))

A Java analog for the let:
{ double xsq = x * x, y2 = y + y, sum; ... }

GNU Emacs Lisp Programming Slide 25
Copyright © 2001-2008 by William H. Mitchell

let, continued

(defun f (x y)
 (let ((xsq (* x x)) (y2 (+ y y)) sum)
 (setq sum (+ xsq y2))
 (format "xsq = %d, y2 = %d, sum = %d" xsq y2 sum)))

Note that a call to f doesn't change bindings visible in the caller—sum is unaffected, xsq and y2

don't exist.

ELISP> (setq sum "old sum")
"old sum"

ELISP> (f 1 2)
"xsq = 1, y2 = 4, sum = 5"

ELISP> sum
"old sum"

ELISP> xsq
*** Eval error *** Symbol's value as variable is void: xsq

ELISP> y2
*** Eval error *** Symbol's value as variable is void: y2

GNU Emacs Lisp Programming Slide 26
Copyright © 2001-2008 by William H. Mitchell

let, continued

linelen rewritten with let:

(defun linelen2 (p1 p2)
 (let ((x1 (car p1))

(y1 (cdr p1))
(x2 (car p2))
(y2 (cdr p2))
(xdiff (- x2 x1))
(ydiff (- y2 y1)))

(sqrt (+ (* xdiff xdiff) (* ydiff ydiff))))
)

GNU Emacs Lisp Programming Slide 27
Copyright © 2001-2008 by William H. Mitchell

while

The special form while provides a fairly conventional while-loop.

Here is the general form:

(while test-expr expr1 ... exprN)

test-expr is evaluated and if it yields a non-nil value, expr1 through exprN are evaluated. It

iterates until test-expr yields nil.

Here is a loop to sum the numbers in a list:

(defun sumnums (L)
 (let ((sum 0))
 (while (not (equal L ()))
 (setq sum (+ sum (car L)))
 (setq L (cdr L)))
 sum))

ELISP> (sumnums '(1 2 3))
6

Problem: Shorten the while's test-expr.

GNU Emacs Lisp Programming Slide 28
Copyright © 2001-2008 by William H. Mitchell

cond

The special form cond provides for conditional execution of expressions. The general form is this:

(cond clause1 clause2 ... clauseN)

Each clause is of the form:

(test-expr expr1 expr2 ... exprN)

Each clause is processed in turn, first evaluating test-expr. If it yields a non-nil value then

expr1 through exprN are executed. The value of the last expression is the value of the cond.

If the test-expr for a clause produces nil, then the next clause is evaluated in the same way.

(defun cond-ex1 (N)
 (cond
 ((= N 0) "N is zero")
 ((> N 100) "N > 100")
 ((= (mod N 2) 0) "N is even")
 (t "None of the above"))
)

GNU Emacs Lisp Programming Slide 29
Copyright © 2001-2008 by William H. Mitchell

cond, continued

For reference:

(defun cond-ex1 (N)
 (cond
 ((= N 0) "N is zero")
 ((> N 100) "N > 100")
 ((= (mod N 2) 0) "N is even")
 (t "None of the above"))
)

Usage:

ELISP> (cond-ex1 10)
"N is even"

ELISP> (cond-ex1 1000)
"N > 100"

ELISP> (cond-ex1 7)
"None of the above"

GNU Emacs Lisp Programming Slide 30
Copyright © 2001-2008 by William H. Mitchell

cond, continued

Imagine a function (divide L N) that separates the values in L based on whether the values are

smaller or larger than N.

ELISP> (divide '(5 2 4 10 3 -3) 5)
((2 4 3 -3) (10))

Implementation:

(defun divide(L N)
 (let ((smaller nil) (bigger nil) elem)
 (while L
 (setq elem (car L))
 (setq L (cdr L))
 (cond
 ((< elem N)
 (setq smaller (cons elem smaller)))
 ((> elem N)
 (setq bigger (cons elem bigger)))
)
)
 (list (reverse smaller) (reverse bigger)))
)

GNU Emacs Lisp Programming Slide 31
Copyright © 2001-2008 by William H. Mitchell

Higher-order functions

mapcar applies a function to every element in a list and produces a list of the results:

ELISP> (mapcar 'length '("a" "test" "of" "mapcar"))
(1 4 2 6)

A function in Lisp can be represented with a list whose first element is lambda.

ELISP> (mapcar '(lambda (n) (* n 2)) '(10 20 30))
(20 40 60)

Here is one way to write mapcar:

(defun mymapcar (f L)
 (cond

 ((consp L)
 (cons

(apply f (car L) nil)
(mymapcar f (cdr L))))

(t ())))

A note about apply: The value produced by (apply '+ 3 4 nil) is 7.

GNU Emacs Lisp Programming Slide 32
Copyright © 2001-2008 by William H. Mitchell

Code that writes code

It is simple to write code that writes code. Imagine a compose function:

ELISP> (compose '(f g h))
(lambda (x) (f (g (h x))))

Here is compose:

(defun compose (L) (list 'lambda '(x) (buildargs L)))

(defun buildargs (L) "for '(a b c) returns '(a (b (c x)))"
 (cond

 ((= (length L) 1) (append L '(x)))
(t (list (car L) (buildargs (cdr L))))))

Usage:

ELISP> (fset 'last (compose '(car reverse)))
(lambda (x) (car (reverse x)))

ELISP> (last '(1 2 3))
3

GNU Emacs Lisp Programming Slide 33
Copyright © 2001-2008 by William H. Mitchell

Code that writes code, continued

The function symbol-function produces the code for a function:

ELISP> (symbol-function 'area)
(lambda
 (radius)
 "Calculates the area of circle with RADIUS"
 (* pi radius radius))

ELISP> (symbol-function 'mymapcar)
(lambda
 (f L)
 (cond
 ((consp L)

(cons
 (apply f

(car L)
nil)

 (mymapcar f
 (cdr L))))

 (t nil)))

GNU Emacs Lisp Programming Slide 34
Copyright © 2001-2008 by William H. Mitchell

Code that writes code, continued

Problem: Write (partapp function value) which produces a partial application.

ELISP> (symbol-function 'add2)
(lambda
 (a b)
 (+ a b))

ELISP> (partapp 'add2 5)
(lambda
 (b)
 (let

 ((a 5)
 (+ a b))))

ELISP> (mapcar (partapp 'add2 5) '(1 2 3))
(6 7 8)

GNU Emacs Lisp Programming Slide 35
Copyright © 2001-2008 by William H. Mitchell

Interaction with the editing subsystem

Simple editor functions

Inserting text

Movement and "the point"

Tagging a word

Line manipulation

Commenting out a block of lines

vals.el

GNU Emacs Lisp Programming Slide 36
Copyright © 2001-2008 by William H. Mitchell

Simple editor functions

Emacs Lisp has hundreds of functions that interact with Emacs' editing subsystem in some way.

There are several editor-specific Lisp datatypes: buffer, window, keymap, marker, and more.

A buffer is Lisp object that holds text. Here are examples of some of the many functions that
interact with buffers:

ELISP> (buffer-name)
"*ielm*"

ELISP> (buffer-size)
107

ELISP> (buffer-string)
"*** Welcome to IELM *** Type (describe-mode) for help.\nELISP>
(buffer-name)\n\"*ielm*\"\nELISP> (buffer-size)\n107\nELISP>
(buffer-string)\n"

ELISP> (buffer-size)
300

Note that the contents of the *ielm* buffer include the text just typed because we're in the

ielm buffer. Also note that interaction increases the size of the buffer.

GNU Emacs Lisp Programming Slide 37
Copyright © 2001-2008 by William H. Mitchell

Simple editor functions, continued

Here is a function that reports the name and size of the current buffer.

(defun bufinfo ()
 (interactive)
 (message "The buffer is %s and has %d bytes"
 (buffer-name)
 (buffer-size)))

The (interactive) call flags the function as one that can be invoked with ESC-x.

The message function creates a string, interpolating arguments like printf in C, and displays

the string in the minibuffer, at the bottom of the screen.

GNU Emacs Lisp Programming Slide 38
Copyright © 2001-2008 by William H. Mitchell

Simple editor functions, continued

The split-string function splits a string. The simplest mode of operation splits on

whitespace:

ELISP> (split-string " just a test ")
("just" "a" "test")

Here is a function that calculates the number of words in the current buffer:

(defun bufwords()
 (interactive)
 (let
 ((words (split-string (buffer-string))))
 (message "%d words in buffer"
 (length words))))

A function can be bound to a keystroke sequence with global-set-key:

(global-set-key "\e.w" 'bufwords)

Typing ESC . w runs the bufwords function.

GNU Emacs Lisp Programming Slide 39
Copyright © 2001-2008 by William H. Mitchell

Inserting text

The insert function inserts text into the current buffer at the current cursor position.

(insert expr1 expr2 ... exprN)

Each expression is a string or ASCII character code.

Here is a simple function that inserts the integers from 1 through N into the current buffer, each on
a separate line:

(defun insert-n (N)
 (interactive "nHow many? ")
 (let ((i 1))
 (while (<= i N)
 (insert (int-to-string i) "\n")
 (setq i (1+ i)))))

(global-set-key "\e.i" 'insert-n)

The argument to interactive indicates that the user should be prompted with "How many?"

The number entered by the user is assigned to N.

GNU Emacs Lisp Programming Slide 40
Copyright © 2001-2008 by William H. Mitchell

Inserting text, continued

Here is a function that makes an entry in a history file. It opens the file, goes to the end, adds the
users login name and a timestamp, and positions the cursor for the start of the entry.

(defun history-entry ()
(interactive)
(find-file "History")
(end-of-buffer)
(insert-string "\n")
(insert-string

(user-login-name) ", " (current-time-string) "\n\n\t"))

Problem: Enhance it so that if somebody is logged is as "root" it complains instead of creating an
entry.

GNU Emacs Lisp Programming Slide 41
Copyright © 2001-2008 by William H. Mitchell

Movement and the "point"

The term point refers to the current position in a buffer. The function point returns the current

value of point—a position in the buffer.

(point) ranges in value from 1 to (buffer-size)+1.

Here is a function that produces the length of the current line:

(defun line-length ()
 (interactive)
 (let (start)
 (beginning-of-line)
 (setq start (point))
 (end-of-line)
 (message "Line is %d characters long"

(- (point) start))))

(global-set-key "\e." 'line-length)

How does it work?

line-length has a needless side-effect. What is it? How can it be fixed?

GNU Emacs Lisp Programming Slide 42
Copyright © 2001-2008 by William H. Mitchell

Tagging a word

Below is a function that puts an HTML tag around the current word.

It uses backward-word and forward-word to locate both ends of the current word.

It special-cases the situation of being at the beginning of a word and doesn't move backwards in
that case.

(defun tag-word (tag)
 (interactive "sTag: ")
 (cond
 ((not (= (char-before (point)) ?)) (backward-word 1)))
 (insert "<" tag ">")
 (forward-word 1)
 (insert "</" tag ">"))

(global-set-key "\e.t" 'tag-word)

GNU Emacs Lisp Programming Slide 43
Copyright © 2001-2008 by William H. Mitchell

Line manipulation

Here is a function that deletes the current line in the buffer and returns the deleted text:

(defun delete-line ()
 (interactive)
 (let (start line)
 (beginning-of-line)
 (setq start (point))
 (end-of-line)
 (setq line (buffer-substring start (1+ (point))))
 (delete-region start (1+ (point)))
 line))

(global-set-key "\e.d" 'delete-line)

Two new functions are introduced:

(buffer-substring start end) returns the buffer text between the positions.

(delete-region start end) deletes the buffer text between the positions.

GNU Emacs Lisp Programming Slide 44
Copyright © 2001-2008 by William H. Mitchell

Line manipulation, continued

We can use delete-line to create a function that lets us haul lines up and down with Alt-Up

and Alt-Down.

(defun haul-line (move)
 (interactive)
 (let ((line (delete-line)))
 (message "Line = '%s'" line)
 (forward-line move)
 (insert line)
 (forward-line -1)))

(global-set-key [M-up] '(lambda () (interactive) (haul-line -1)))
(global-set-key [M-down] '(lambda () (interactive) (haul-line 1)))

Instead of binding the key sequences to intermediate functions like haul-line-up and haul-

line-down, the lambda notation is used to directly call haul-line with a suitable value.

GNU Emacs Lisp Programming Slide 45
Copyright © 2001-2008 by William H. Mitchell

Commenting out a block of lines

If a block of text is swept out with the mouse that block of text is known as "the region". The
position where the sweep started is produced by the mark function. The cursor is left where the

sweep stopped and that position is produced by point.

Other operations can cause "the mark" to be set as well. The text between (point) and (mark)

is "the region".

Let's develop some code to comment out a block of source code lines. The first piece is a simple-
minded function to produce a comment-to-end-of-line string based on the extension of the file
being edited in the current buffer:

(defun get-comment-string-for-buffer()
(let ((file-ext (file-name-extension (buffer-file-name))))

(cond
((string= file-ext "pl") "%")
((string= file-ext "rb") "#")
((string= file-ext "java") "//")
((string= file-ext "el") ";"))))

GNU Emacs Lisp Programming Slide 46
Copyright © 2001-2008 by William H. Mitchell

Commenting out a block, continued

Here's the function that does the commenting. It first swaps the point and mark if necessary and
then proceeds a line at a time from the point to the mark and inserts the comment string at the start
of each line.

(defun comment-lines ()
 (interactive)
 (cond ((< (mark) (point))
 (exchange-point-and-mark))) ; be sure point <= mark
 (let

 ((cmt-string (get-comment-string-for-buffer)))
 (forward-line 0)
 (while (< (point) (mark))
 (insert cmt-string " ")
 (forward-line 1))
)
)

(global-set-key "\e.c" 'comment-lines)

GNU Emacs Lisp Programming Slide 47
Copyright © 2001-2008 by William H. Mitchell

Larger example: vals.el

Imagine a function vals that calculates the count, sum, average, minimum, and maximum of the

values contained in a rectangular region of text.

As some sample data, here are file sizes, in bytes, for some Elisp source files:

 49 area.el
 1282 buf.el
 564 cond.el
 350 errors.el
 387 helpers.el
 167 while1.el
 401 while2.el

GNU Emacs Lisp Programming Slide 48
Copyright © 2001-2008 by William H. Mitchell

vals, continued

 vals's first step is to use extract-rectangle to get the rectangular region of text bounded at

opposite corners by the region selected by the user. The result is a list of strings, like (" 49"

"1282" " 564").

It then loops through the strings. If a string represents a number it is included in the computation.
If not, it is quietly ignored.

(defun vals (begin end)
 (interactive "r")
 (let (
 (lines (extract-rectangle begin end))
 (nlines 0)
 (sum 0)
 nums snums min max avg)

 (while lines
 (setq nlines (1+ nlines))
 (setq num (read (concat (car lines) " ()")))
 (if (numberp num)
 (setq nums (append nums (list num))))
 (setq lines (cdr lines))
)

GNU Emacs Lisp Programming Slide 49
Copyright © 2001-2008 by William H. Mitchell

vals, continued

At this point the region has been fully processed. nums is a list of the numbers that were found. A

series of calculations are performed on nums and the user is presented with the results.

 (setq N (length nums))

 (cond
 ((not (= N 0))
 (setq nums (sort (copy-sequence nums) '<))
 (setq min (car nums))
 (setq max (car (reverse nums)))
 (setq sum (apply '+ nums))
 (setq avg (/ (float sum) N))
 (message (concat "%d lines, %d values; min = %g, "
 "max = %g, sum = %g, avg = %g")
 nlines N min max sum avg))
 (t (message "%d lines, no numbers" nlines)))
)
)

(global-set-key "\eV" 'vals)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49

