
Author: William. H. Mitchell (whm)

Mitchell Software Engineering (.com)

This work is hereby put in the public domain;

there are no restrictions on usage.

Fundamentals of the
 Icon Programming Language

Lecture Slides

Fundamentals of the Icon Programming Language Slide 1
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

What is Icon?

Icon is a high-level, general purpose, imperative language with a
traditional appearance, but with several interesting aspects:

A rich set of built-in data types

A rich but cohesive and orthogonal set of operators and
functions

A novel expression evaluation mechanism

An integrated facility for analysis of strings

Automatic memory management (garbage collection)

A small "mental footprint"

The philosophy of Icon: (in my opinion)

Provide a “critical-mass” of types and operations

Give the programmer as much freedom as possible

Put the burden of efficiency on the language
implementation

Another opinion: Every programmer should have a language
like Icon in their “toolbox”.

Fundamentals of the Icon Programming Language Slide 2
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

A little history

Icon is a descendent of SNOBOL4 and SL5.

Icon was designed at the University of Arizona in the late 1970s
by a team lead by Ralph Griswold.

Last major upheaval in the language itself was in 1982, but a
variety of minor elements have been added in the years since.

Idol, an object-oriented derivative was developed in 1988 by
Clint Jeffery.

Graphics extensions evolved from 1990 through 1994.

Unicon (Unified Extended Icon) evolved from 1997 through
1999 and incremental change continues. Unicon has support for
object-oriented programming, systems programming, and
programming-in-the-large.

The origin of the name "Icon" is clouded. Some have suggested
it comes from "iconoclast".

Fundamentals of the Icon Programming Language Slide 3
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Running Icon

One way to work with Icon is to put an entire program into a
file, translate it into a bytecode executable, and run it.

A more interactive option is the Icon Evaluator, ie, which
evaluates Icon expressions:

% ie
Icon Evaluator, Version 0.8.1, ? for help
][3+4;
 r1 := 7 (integer)

][3.4*5.6;
 r2 := 19.04 (real)

]["x" || "y" || "z";
 r3 := "xyz" (string)

][reverse(r3);
 r4 := "zyx" (string)

][center("hello",20,".");
 r5 := ".......hello........" (string)

][^D (control-D to exit)

%

Fundamentals of the Icon Programming Language Slide 4
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Variables

Variables can be declared explicitly but the more common
practice is to simply name variables when needed.

][x := 3+4;
 r := 7 (integer)

][x;
 r := 7 (integer)

][y := x + 10;
 r := 17 (integer)

][y;
 r := 17 (integer)

Variable names may consist of any number of letters, digits, and
underscores and must start with letter or underscore.

Variable names, along with everything else in Icon, are case-
sensitive.

Note that the result of assignment is the value assigned.

Fundamentals of the Icon Programming Language Slide 5
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Variables, continued

Uninitialized variables have a null value:

][xyz;
 r := &null (null)

A variable may be assigned the null value:

][x := 30;
 r := 30 (integer)

][x := &null;
 r := &null (null)

][x;
 r := &null (null)

&null is one of many Icon keywords—special identifiers
whose name is prefixed with an ampersand.

Fundamentals of the Icon Programming Language Slide 6
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Variables, continued

Icon variables have no type associated with them. Instead, types
are associated with values themselves.

Any variable may be assigned a value of any type and then later
assigned a value of a different type:

][x := "testing";
 r := "testing" (string)

][x;
 r := "testing" (string)

][x := 3.4;
 r := 3.4 (real)

][x;
 r := 3.4 (real)

][x := 100;
 r := 100 (integer)

][x;
 r := 100 (integer)

Note that there is no way to declare the type of a variable.

Fundamentals of the Icon Programming Language Slide 7
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Variables, continued

The type of a value can determined with the type function:

][type("abc");
 r := "string" (string)

][type(3/4);
 r := "integer" (string)

][type(3.0/4.0);
 r := "real" (string)

][x := "abc";
 r := "abc" (string)

If the argument of type is a variable, it is the type of the value
held by the variable that is reported:

][type(x);
 r := "string" (string)

][type(type);
 r := "procedure" (string)

][type(xyz); (no value assigned...)
 r := "null" (string)

Fundamentals of the Icon Programming Language Slide 8
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Arithmetic operations

Integers and reals are collectively referred to as numeric types.

Icon's arithmetic operators for numeric types:

+ addition
- subtraction
* multiplication
/ division
% remaindering (reals are allowed)
^ exponentiation
- negation (unary operator)
+ (unary operator)

Examples:

][30 / 4;
 r := 7 (integer)

][30 / 4.0;
 r := 7.5 (real)

][2.3 % .4;
 r := 0.3 (real)

][-r;
 r := -0.3 (real)

][+-3;
 r1 := -3 (integer)

A binary arithmetic operator produces an integer result only if
both operands are integers.

Fundamentals of the Icon Programming Language Slide 9
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Arithmetic operations, continued

Exponentiation:

][2 ^ 3;
 r := 8 (integer)

][100 ^ .5;
 r := 10.0 (real)

Some implementations of Icon support infinite precision integer
arithmetic:

][x := 2 ^ 70;
 r := 1180591620717411303424 (integer)

][y := 2 ^ 62;
 r := 4611686018427387904 (integer)

][x / y;
 r := 256 (integer)

integer is the only integer type in Icon; real is the only
floating point type in Icon.

Fundamentals of the Icon Programming Language Slide 10
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Conversion between types

Icon freely converts between integers, reals, and strings if a
supplied value is not of the required type:

][x := 3.4 * "5";
 r := 17.0 (real)

][x := x || x;
 r := "17.017.0" (string)

][x;
 r := "17.017.0" (string)

][q := "100"/2;
 r := 50 (integer)

][q := "100.0"/2;
 r := 50.0 (real)

][q := "1e2"/2;
 r := 50.0 (real)

][q := q || q;
 r := "50.050.0" (string)

Icon never converts &null to a value of an appropriate type:

][xyz;
 r := &null (null)

][xyz + 10;

Run-time error 102
numeric expected
offending value: &null

Fundamentals of the Icon Programming Language Slide 11
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Strings

The string type represents character strings of arbitrary
length.

String literals are delimited by double quotes:

"just a string right here"

Any character can appear in a string.

Characters can be specified using escape sequences:

\n newline
\t tab
\" double quote
\\ backslash
\ooo octal character code
\xhh hexadecimal character code
\^c control character c

Example:

]["\n\012\x0a\^j";
 r := "\n\n\n\n" (string)

]["A\x41\101 Exterminators";
 r := "AAA Exterminators" (string)

For the full set of string literal escapes, see page 254 in the text.

Fundamentals of the Icon Programming Language Slide 12
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Strings, continued

The string concatenation operator is || (two "or" bars):

][s1 := "Fish";
 r := "Fish" (string)

][s2 := "Knuckles";
 r := "Knuckles" (string)

][s3 := s1 || " " || s2;
 r := "Fish Knuckles" (string)

The unary * operator is used throughout Icon to calculate the
"size" of a value. For strings, the size is the number of
characters:

][s := "abc";
 r := "abc" (string)

][*s;
 r := 3 (integer)

][*(s || s);
 r := 6 (integer)

][*s || s;
 r := "3abc" (string)

The operator * is said to be polymorphic because it can be
applied to values of many types.

Fundamentals of the Icon Programming Language Slide 13
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Strings, continued

Strings can be subscripted with the [] operator:

][letters := "abcdefghijklmnopqrstuvwxyz";
 r := "abcdefghijklmnopqrstuvwxyz" (string)

][letters[1];
 r := "a" (string)

][letters[*letters];
 r := "z" (string)

][letters[5] || letters[10] || letters[15];
 r := "ejo" (string)

The first character in a string is at position 1, not 0.

A character can be changed with assignment:

][letters[13] := "X";
 r := "X" (string)

][letters;
 r := "abcdefghijklXnopqrstuvwxyz" (string)

A little fun—Icon has a swap operator:

][letters[1] :=: letters[26];
 r := "z" (string)

][letters;
 r := "zbcdefghijklXnopqrstuvwxya" (string)

Note that there is no character data type in Icon; single
characters are simply represented by one-character strings.

 Icon reference material is on the Web at1

http://www.cs.arizona.edu/icon/refernce/ref.htm

Fundamentals of the Icon Programming Language Slide 14
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Strings, continued

Icon has a number of built-in functions and a number of them
operate on strings.

Appendix A in the text enumerates the full set of built-in
functions starting on page 275 . The function descriptions take1

this form:

repl(s1, i) : s2 replicate string

repl(s1, i) produces a string consisting of i concatenations
of s1

 Errors:
101 i not integer
103 s1 not string
205 i < 0
306 inadequate space in string region

Usage of repl:

][repl("x", 10);
 r := "xxxxxxxxxx" (string)

][*repl(r, 100000);
 r := 1000000 (integer)

Fundamentals of the Icon Programming Language Slide 15
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Failure

A unique aspect of Icon is that expressions can fail to produce a
result. A simple example of an expression that fails is an out of
bounds string subscript:

][s := "testing";
 r := "testing" (string)

][s[5];
 r := "i" (string)

][s[50];
Failure

It is said that "s[50] fails"—it produces no value.

If an expression produces a value it is said to have succeeded.

When an expression is evaluated it either succeeds or fails.

Fundamentals of the Icon Programming Language Slide 16
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Failure, continued

An important rule:

An operation is performed only if a value is present for all
operands. If a value is not present for all operands, the
operation fails.

Another way to say it:

If evaluation of an operand fails, the operation fails.

Examples:

][s := "testing";
 r := "testing" (string)

]["x" || s[50];
Failure

][reverse("x" || s[50]);
Failure

][s := reverse("x" || s[50]);
Failure

][s;
 r := "testing" (string)

Note that failure propagates.

Fundamentals of the Icon Programming Language Slide 17
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Failure, continued

Another example of an expression that fails is a comparison
whose condition does not hold:

][1 = 0;
Failure

][4 < 3;
Failure

][10 >= 20;
Failure

A comparison that succeeds produces the value of the right hand
operand as the result of the comparison:

][1 < 2;
 r := 2 (integer)

][1 = 1;
 r := 1 (integer)

][10 ~= 20;
 r := 20 (integer)

What do these expressions do?

max := max < n

x := 1 + 2 < 3 * 4 > 5

Fundamentals of the Icon Programming Language Slide 18
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Failure, continued

Fact:
Unexpected failure is the root of madness.

Consider this code:

write("Before make_block")
text := make_block(x, y, z)
write(text[10])
write("After make_block")

Output:

Before make_block
After make_block

Problem:
Contrast expression failure to Java's exception handling
facility.

Fundamentals of the Icon Programming Language Slide 19
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Producing output

The built-in function write prints a string representation of
each of its arguments and appends a final newline.

][write(1);
1
 r := 1 (integer)

][write("r is ", r);
r is 1
 r := 1 (integer)

][write(r, " is the value of r");
1 is the value of r
 r := " is the value of r" (string)

][write(1,2,3,"four","five","six");
123fourfivesix
 r := "six" (string)

write returns the value of the last argument.

If an argument has the null value, a null string is output:

][write("x=", x, ",y=", y, ".");
x=,y=.
 r := "." (string)

The built-in function writes is identical to write, but it
does not append a newline.

Fundamentals of the Icon Programming Language Slide 20
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Reading input

The built-in function read() reads one line from standard
input.

][line := read();

Here is some input (typed by user)
 r := "Here is some input" (string)

][line2 := read();

 (user pressed <ENTER>)
 r := "" (string)

On end of file, such as a control-D from the keyboard, read
fails:

][line := read();
^D
Failure

Question: What is the value of line?

Fundamentals of the Icon Programming Language Slide 21
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

The while expression

Icon has several traditionally-named control structures, but they
are driven by success and failure.

The general form of the while expression is:

while expr1 do
expr2

If expr1 succeeds, expr2 is evaluated. This continues
until expr1 fails.

Here is a loop that reads lines and prints them:

while line := read() do
 write(line)

If no body is needed, the do clause can be omitted:

while write(read())

What does the following code do?

while line := read()
 write(line)

Problem: Write a loop that prints "yes" repeatedly.

Fundamentals of the Icon Programming Language Slide 22
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Compound expressions

A compound expression groups a series of expressions into a
single expression.

The general form of a compound expression is:

{ expr1; expr2; ...; exprN }

Each expression is evaluated in turn. The result of the
compound expression is the result of exprN, the last expression:

][{ write(1); write(2); write(3)};
1
2
3
 r := 3 (integer)

A failing expression does not stop evaluation of subsequent
expressions:

][{ write(1); write(2 < 1); write(3)};
1
3
 r := 3 (integer)

Fundamentals of the Icon Programming Language Slide 23
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Compound expressions, continued

Recall the general form of the while expression:

while expr1 do
expr2

Here the body of a while loop is a compound expression:

line_count := 0;

while line := read() do {
 write(line);
 line_count := line_count + 1;
 }

write(line_count, " lines read");

Fundamentals of the Icon Programming Language Slide 24
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Semicolon insertion

The Icon translator will "insert" a semicolon if an expression
ends on one line and the next line begins with another
expression.

Given this multi-line input:

{
write(1)
write(2)
write(3)

}

The translator considers it to be:

{
write(1);
write(2);
write(3)

}

It is standard practice to rely on the translator to insert
semicolons. But, there is a danger of an unexpected insertion of
a semicolon:

][{ x := 3
... - 2 };
 r := -2 (integer)

A good habit: Always break expressions after an operator:

][{ x := 3 -
... 2 };
 r := 1 (integer)

Fundamentals of the Icon Programming Language Slide 25
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Problem: Reversal of line order

Write a segment of code that reads lines from standard input
and upon end of file, prints the lines in reverse order.

For this input:

line one
the second line
#3

The output is:

#3
the second line
line one

Fundamentals of the Icon Programming Language Slide 26
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Problem: Line numbering with a twist

Write a segment of code that reads lines from standard input and
produces a numbered listing of those lines on standard output.

For this input:

just
testing
this

We want this output:

 1 just
 2 testing
 3 this

Line numbers are to be right justified in a six-character field and
followed by two spaces. The text from the input line then
follows immediately.

Ignore the possibility that more than 999,999 lines might be
processed.

The twist: Don't use any digits in your code.

Handy: The right(s,n) function right-justifies the string s
in a field of width n:

][right("abc", 5);
 r := " abc" (string)

Fundamentals of the Icon Programming Language Slide 27
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

if-then-else

The general form of the if-then-else expression is

if expr1 then expr2 else expr3

If expr1 succeeds the result of the if-then-else expression is the
result of expr2. If expr1 fails, the result is the result of expr3.

][if 1 < 2 then 3 else 4;
 r := 3 (integer)

][if 1 > 2 then 3 else 4;
 r := 4 (integer)

][if 1 < 2 then 2 < 3 else 4 < 5;
 r := 3 (integer)

][if 1 > 2 then 2 > 3 else 4 > 5;
Failure

Explain this expression:

label := if min < x < max then
"in range"

 else
"out of bounds"

Fundamentals of the Icon Programming Language Slide 28
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

if-then-else, continued

There is also an if-then expression:

if expr1 then expr2

If expr1 succeeds, the result of the if-then expression is the
result of expr2. If expr1 fails, the if-then fails.

Examples:

][if 1 < 2 then 3;
 r := 3 (integer)

][if 1 > 2 then 3;
Failure

What is the result of this expression?

x := 5 + if 1 > 2 then 3

One way to nest if-then-elses:

if (if x < y then x else y) > 5 then
 (if x > 6 then 7)
else
 (if x < 8 then 9)

The if-then-else and if-then expressions are considered to be
control structures rather than operators.

A characteristic of a control structure is that a constituent
expression can fail without terminating evaluation of the
containing expression (i.e., the control structure).

Fundamentals of the Icon Programming Language Slide 29
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

The break and next expressions

The break and next expressions are similar to break and
continue in Java.

This is a loop that reads lines from standard input, terminating
on end of file or when a line beginning with a period is read.
Each line is printed unless the line begins with a # symbol.

while line := read() do {
if line[1] == "." then

break

if line[1] == "#" then
next

write(line)
}

The operator == tests equality of two strings.

Fundamentals of the Icon Programming Language Slide 30
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

The not expression

The not expression, a control structure, has this form:

not expr

If expr produces a result, the not expression fails.

If expr fails, the not expression produces the null value.

Examples:

][not 0;
Failure

][not 1;
Failure

][not (1 > 2);
 r := &null (null)

][if not (1 > 2) then write("ok");
ok
 r := "ok" (string)

not has very high precedence. As a rule its expr should
always be enclosed in parentheses.

Question: Could not be implemented as an operator rather than
a control structure?

Fundamentals of the Icon Programming Language Slide 31
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

The & operator

The general form of the & operator:

expr1 & expr2

expr1 is evaluated first. If expr1 succeeds, expr2 is
evaluated. If expr2 succeeds, the entire expression succeeds
and produces the result of expr2. If either expr1 or expr2
fails, the entire expression fails.

Examples:

][1 & 2;
 r := 2 (integer)

][0 & 2 < 4;
 r := 4 (integer)

][r > 3 & write("r = ", r);
r = 4
 r := 4 (integer)

][while line := read() & line[1] ~== "." do
... write(line);
a
a
test
test
.here
Failure

& has the lowest precedence of any operator.

Problem: Describe the implementation of the & operator.

Fundamentals of the Icon Programming Language Slide 32
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Comparison operators

There are six operators for comparing values as numeric
quantities:

< > <= >= = ~=

There are six operators for comparing values as strings:

<< >> <<= >>= == ~==

Question: Why aren't the comparison operators overloaded so
that one set of operators would suffice for both numeric and
string conversions?

Fundamentals of the Icon Programming Language Slide 33
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Comparison operators, continued

Analogous comparison operators can produce differing results
for a given pair of operands:

]["01" = "1";
 r := 1 (integer)

]["01" == "1";
Failure

]["01" < "1";
Failure

]["01" << "1";
 r := "1" (string)

The === and ~=== operators test for exact equivalence—both
the type and value must be identical:

][2 === "2";
Failure

][2 ~=== "2";
 r := "2" (string)

]["xyz" === "x" || "y" || "z";
 r := "xyz" (string)

Fundamentals of the Icon Programming Language Slide 34
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Comparison operators, continued

The unary operators / and \ test to see if a value is null or not,
respectively.

The expression /expr succeeds and produces expr if expr
has a null value.

The expression \expr succeeds and produces expr if expr
has a non-null value.

Examples:

][x;
 r := &null (null)

][\x;
Failure

][/x;
 r := &null (null)

][/x := 5;
 r := 5 (integer)

][/x := 10;
Failure

][x;
 r := 5 (integer)

As a mnemonic aid, think of /x as succeeding when x is null
because the null value allows the slash to fall flat.

Fundamentals of the Icon Programming Language Slide 35
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Explicit conversions

In addition to the implicit conversions that Icon automatically
performs as needed, there are conversion functions to produce a
value of a specific type from a given value.

The functions integer and real attempt to produce a integer
or real value, respectively. numeric produces either an integer
or a real, preferring integers. Examples:

][integer("12");
 r := 12 (integer)

][integer(.01);
 r := 0 (integer)

][real("12");
 r := 12.0 (real)

][real("xx");
Failure

][numeric("12");
 r := 12 (integer)

][numeric("12.0");
 r := 12.0 (real)

The string function produces a string corresponding to a
given value.

][string(2^32);
 r := "4294967296" (string)

][string(234.567e-30);
 r := "2.34567e-28" (string)

Fundamentals of the Icon Programming Language Slide 36
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Explicit conversions, continued

A code fragment to repeatedly prompt until a numeric value is
input:

value := &null # not really needed...

while /value do {
writes("Value? ")
value := numeric(read())
}

write("Value is ", value)

Interaction:

Value? x
Value?
Value? 10
Value is 10

Fundamentals of the Icon Programming Language Slide 37
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

The repeat expression

An infinite loop can be produced with while 1 do ... but
the repeat expression is the preferred way to indicate endless
repetition.

The general form:

repeat expr

Example:

repeat write(1)

Another way to copy lines from standard input to standard
output:

repeat {
 if not (line := read()) then
 break
 write(line)
 }

Fundamentals of the Icon Programming Language Slide 38
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

The until-do expression

General form:

until expr1 do
expr2

until-do is essentially a while-do, but with an inverted
test, terminating when the test succeeds.

This loop prints lines until a line containing only "start" is
encountered:

until (line := read()) == "start" do
 write(line)

The do clause can be omitted:

until read() == "end"

Fundamentals of the Icon Programming Language Slide 39
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Procedure basics

All executable code in an Icon program is contained in
procedures. A procedure may take arguments and it may return
a value of interest.

Execution begins by calling the procedure main.

A simple program with two procedures:

procedure main()
 while n := read() do
 write(n, " doubled is ", double(n))
end

procedure double(n)
 return 2 * n
end

Fundamentals of the Icon Programming Language Slide 40
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Sidebar: Compilation

If double.icn contains the code on the previous slide, it can
be compiled and linked into an icode executable named
double with the icont command:

% icont double.icn
Translating:
double.icn:
 main
 double
No errors
Linking:
% ls -l double
-rwxrwxr-x 1 whm dept 969 Jan 19 15:50 double
% double
7
7 doubled is 14
15
15 doubled is 30
^D (control-D)
%

The source file name can be followed with -x to cause
execution to immediately follow compilation:

% icont double.icn -x
Translating:
double.icn:
 main
 double
No errors
Linking:
Executing:
100
100 doubled is 200

Fundamentals of the Icon Programming Language Slide 41
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Procedure basics, continued

A procedure may produce a result or it may fail.

Here is a more flexible version of double:

procedure double(x)
 if type(x) == "string" then
 return x || x
 else if numeric(x) then
 return 2 * x
 else
 fail
end

Usage:

][double(5);
 r := 10 (integer)

][double("xyz");
 r := "xyzxyz" (string)

][double(&null);
Failure

][double(double);
Failure

Fundamentals of the Icon Programming Language Slide 42
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Procedure basics, continued

If no value is specified in a return expression, the null value
is returned.

procedure f()
 return
end

Usage:

][f();
 r := &null (null)

If the flow of control reaches the end of a procedure without
returning, the procedure fails.

procedure hello()
 write("Hello!")
end

Usage:

][hello();
Hello!
Failure

Fundamentals of the Icon Programming Language Slide 43
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Procedure basics, continued

Explain the operation of this code:

procedure main()
 while writelong(read(), 10)
end

procedure writelong(s,n)
 if *s > n then
 write(s)
end

Fundamentals of the Icon Programming Language Slide 44
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Procedures—omitted arguments

If any arguments for a procedure are not specified, the value of
the corresponding parameter is null.

procedure wrap(s, w)
 /w := "()" # if w is null, set w to "()"
 return w[1] || s || w[2]
end

][wrap("x", "[]");
 r := "[x]" (string)

][wrap("x");
 r := "(x)" (string)

Any or all arguments can be omitted:

procedure wrap(s, w)
 /s := ""
 /w := "()"
 return w[1] || s || w[2]
end

][wrap("x");
 r := "(x)" (string)

][wrap(,"{}");
 r := "{}" (string)

][wrap(,);
 r := "()" (string)

][wrap();
 r := "()" (string)

Arguments in excess of the formal parameters are simply
ignored.

Fundamentals of the Icon Programming Language Slide 45
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Omitted arguments, continued

Many built-in functions have default values for omitted
arguments.

][right(35, 10, ".");
 r1 := "........35" (string)

][right(35, 10);
 r2 := " 35" (string)

][trim("just a test ");
 r3 := "just a test" (string)

][reverse(trim(reverse(r1), "."));
 r4 := "35" (string)

Fundamentals of the Icon Programming Language Slide 46
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Scope rules

In Icon, variables have either global scope or local scope.

Global variables are accessible inside every procedure in a
program.

Global variables are declared with a global declaration:

global x, y
global z
procedure main()
 x := 1
 z := "zzz..."
 f()
 write("x is ", x)
end

procedure f()
 x := 2
 write(z)
end

Output:

zzz...
x is 2

This is no provision for initializing global variables in the
global declaration.

Global declarations must be declared outside of procedures.

The declaration of a global does not need to precede its first use.

Fundamentals of the Icon Programming Language Slide 47
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Scope rules, continued

The local declaration is used to explicitly indicate that a
variable has local scope.

procedure x()
 local a, b

 a := g()
 b := h(a)
 f(a, b)
end

Local variables are accessible only inside the procedure in
which they are defined (explicitly or implicitly).

Any data referenced by a local variable is free to be reclaimed
when the procedure returns.

If present, local declarations must come first in a procedure.

Fundamentals of the Icon Programming Language Slide 48
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Scope rules—a hazard

Undeclared variables default to local unless they are elsewhere
defined as global. This creates a hazard:

here.icn:

procedure x()
 a := g()
 b := h(a)
 f(a, b)

end

elsewhere.icn:

global a, b
...

A call to x will cause the global variables a and b to be
modified.

Names of built-in functions and Icon procedures are global
variables. Inadvertently using a routine name as an undeclared
local variable will clobber the routine.

procedure f(s)
pos := get_position(s, ...)
...

end

Unfortunately, there is a built-in function named pos!

Rule of thumb: Always declare local variables. (Use icont's
-u flag to find undeclared variables.)

Fundamentals of the Icon Programming Language Slide 49
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

static variables

The static declaration is used to indicate that the value of a
variable, implicitly a local, is to be retained across calls.

Here is a procedure that returns the last value it was called with:

procedure last(n)
 static last_value

 result := last_value
 last_value := n
 return result
end

Usage:

][last(3);
 r := &null (null)

][last("abc");
 r := 3 (integer)

][last(7.4);
 r := "abc" (string)

Fundamentals of the Icon Programming Language Slide 50
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

static variables, continued

An initial clause can be used to perform one-time
initialization. The associated expression is evaluated on the first
call to the procedure.

Example:

procedure log(s)
 static entry_num
 initial {
 write("Log initialized")
 entry_num := 0
 }

 write(entry_num +:= 1, ": ", s)
end

procedure main()
 log("The first entry")
 log("Another entry")
 log("The third entry")
end

Output:

Log initialized
1: The first entry
2: Another entry
3: The third entry

Fundamentals of the Icon Programming Language Slide 51
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Procedures—odds & ends

For reference, here is the general form of a procedure:

procedure name(param1, ..., paramN)
local-declarations
initial-clause
procedure-body

end

The local-declarations section is any combination of local and
static declarations.

A minimal procedure:

procedure f()
end

Proper terminology:

Built-in routines like read and write are called
functions.

Routines written in Icon are called procedures.

type() returns "procedure" for both functions and
procedures.

Note that every procedure and function either returns a value or
fails.

Fundamentals of the Icon Programming Language Slide 52
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

More on compilation

An Icon program may be composed of many procedures. The
procedures may be divided among many source files.

If more than one file is named on the icont command line, the
files are compiled and linked into a single executable. The
command

% icont roaster.icn db.icn iofuncs.icn

compiles the three .icn files and produces an executable
named roaster.

Linking can be suppressed with the -c option,

% icont -c db.icn iofuncs.icn

producing the ucode files db.u1, db.u2, iofuncs.u1, and
iofuncs.u2.

Then, use the link directive in the source file:
roaster.icn:

link db, iofuncs
procedure main()

...

and compile it:

% icont roaster.icn

icont searches the directories named in the IPATH
environment variable for ucode files named in link directives.

Fundamentals of the Icon Programming Language Slide 53
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

ie's .inc command

ie does not currently allow procedures to be defined
interactively, but it can load an Icon source file with the .inc
(include) command.

Assuming that the procedure double is in the file
double.icn, it can be used like this:

][.inc double.icn
][double(5);
 r := 10 (integer)
][double("abc");
 r := "abcabc" (string)

With .inc, the included file is recompiled automatically—you
can edit in one window, run ie in another, and the latest saved
version is used each time.

Fundamentals of the Icon Programming Language Slide 54
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Procedures—call tracing

One of Icon's debugging facilities is call tracing.

1 procedure main()
2 write(sum(3))
3 end
4
5 procedure sum(n)
6 return if n = 0 then 0
7 else n + sum(n-1)
8 end

Execution with tracing:

% setenv TRACE -1
% sum
 : main()
sum.icn : 2 | sum(3)
sum.icn : 7 | | sum(2)
sum.icn : 7 | | | sum(1)
sum.icn : 7 | | | | sum(0)
sum.icn : 6 | | | | sum returned 0
sum.icn : 6 | | | sum returned 1
sum.icn : 6 | | sum returned 3
sum.icn : 6 | sum returned 6
6
sum.icn : 3 main failed
% setenv TRACE 0
% sum
15

Handy csh aliases:

alias tn setenv TRACE -1
alias tf unsetenv TRACE

Inside a program, &trace := -1 turns on tracing.

Fundamentals of the Icon Programming Language Slide 55
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Augmented assignment

Aside from the assignment and swap operators, every infix
operator can be used in an augmented assignment.

Examples:

i +:= 1

s ||:= read()

x /:= 2

y ^:= 3

i <:= j

s1 >>:= s2

There are no unary increment/decrement operators such as i++,
but at one point, this was valid:

i++++

Fundamentals of the Icon Programming Language Slide 56
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Comments

Icon's only commenting construct is #, which indicates that the
rest of the line is a comment:

#
The following code will initialize i
#
i := 0 # i is now initialized

In lieu of a block comment capability, Icon's preprocessor can
be used:

write(1)
$ifdef DontCompileThis
write(2)
write(3)
$endif
write(4)

Assuming that DontCompileThis hasn't been defined with a
$define directive, the enclosed write statements are
excluded from the compilation.

Fundamentals of the Icon Programming Language Slide 57
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Multi-line string literals

String literals can be continued across lines by ending the line
with an underscore. The first non-whitespace character resumes
the literal:

s := "This is a long _
 literal\n right here _
 ."
write(s)

Output:

This is a long literal
 right here .

Note that whitespace preceding the underscore is preserved, but
whitespace at the start of a line is elided.

Less efficient, but easier to remember:

s := "This is a long " ||
 "literal\n right here " ||
 "."
write(s)

Be sure to put the concatenation operators at the end of a line,
not at the beginning!

Fundamentals of the Icon Programming Language Slide 58
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Substrings

A substring of a string s is the string that lies between two
positions in s.

Positions are thought of as being between characters and run in
both directions:

 1 2 3 4 5 6 7 8
 | | | | | | | |

 t o o l k i t

 | | | | | | | |
 -7 -6 -5 -4 -3 -2 -1 0

One way to create a substring is with the form s[i:j], which
specifies the portion of s between the positions i and j:

][s := "toolkit";
 r := "toolkit" (string)

][s1 := s[2:4];
 r := "oo" (string)

][s1;
 r := "oo" (string)

][s[-6:-4];
 r := "oo" (string)

][s[5:0];
 r := "kit" (string)

][s[0:5];
 r := "kit" (string)

Fundamentals of the Icon Programming Language Slide 59
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Substrings, continued

For reference:

 1 2 3 4 5 6 7 8
 | | | | | | | |
 t o o l k i t
 | | | | | | | |
 -7 -6 -5 -4 -3 -2 -1 0

The form s[i] is in fact an abbreviation for s[i:i+1]:

][s[1]; (Equivalent to s[1:2])
 r := "t" (string)

][s[-1];
 r := "t" (string)

][s[-2];
 r := "i" (string)

A substring can be specified as the target of an assignment:

][s[1] := "p";
 r := "p" (string)

][s[5:0] := "";
 r := "" (string)

][s[-1] := "dle";
 r := "dle" (string)

][s;
 r := "poodle" (string)

Fundamentals of the Icon Programming Language Slide 60
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Substrings, continued

Note that a null substring can be assigned to:

][s := "xy";
 r := "xy" (string)

][s[2:2];
 r := "" (string)

][s[2:2] := "-";
 r := "-" (string)

][s;
 r := "x-y" (string)

Assignment of string values does not cause sharing of data:

][s1 := "string 1";
 r := "string 1" (string)

][s2 := "string 2";
 r := "string 2" (string)

][s1 := s2;
 r := "string 2" (string)

][s1[1:3] := "";
 r := "" (string)

][s2;
 r := "string 2" (string)

(In other words, strings use value semantics.)

Fundamentals of the Icon Programming Language Slide 61
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Substrings, continued

For reference:

 1 2 3 4 5 6 7 8
 | | | | | | | |
 t o o l k i t
 | | | | | | | |
 -7 -6 -5 -4 -3 -2 -1 0

Another subscripting syntax is s[i+:n], which is equivalent to
s[i:i+n]:

][s[4+:2];
 r := "lk" (string)

][s[-3+:3];
 r := "kit" (string)

][s[-5+:3];
 r := "olk" (string)

A related form is s[i-:n], which is equivalent to s[i:i-n]:

][s[5-:4];
 r := "tool" (string)

][s[0-:3];
 r := "kit" (string)

][s[-2-:2];
 r := "lk" (string)

In essence, all substring specifications name the string of
characters between two positions.

Fundamentals of the Icon Programming Language Slide 62
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Sidebar: Implementation of substrings

Problem: Speculate on how substrings are implemented.

Code to work with:

s := "testing"
c := s[1]
s2 := s[2:-1]

Memory:

Fundamentals of the Icon Programming Language Slide 63
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Generator basics

In most languages, evaluation of an expression always produces
one result. In Icon, an expression can produce zero, one, or
many results.

Consider the following program. The procedure Gen is said to
be a generator.

procedure Gen()
 write("Gen: Starting up...")
 suspend 3

 write("Gen: More computing...")
 suspend 7

 write("Gen: Still computing...")
 suspend 13

 write("Gen: Out of gas...")
 fail # not really needed
end

procedure main()
 every i := Gen() do
 write("Result = ", i)
end

Execution:

Gen: Starting up...
Result = 3
Gen: More computing...
Result = 7
Gen: Still computing...
Result = 13
Gen: Out of gas...

Fundamentals of the Icon Programming Language Slide 64
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Generator basics, continued

The suspend control structure is like return, but the
procedure remains active with all state intact and ready to
continue execution if it is resumed.

Program output with call tracing active:

 : main()
gen.icn : 2 | Gen()
Gen: Starting up...
gen.icn : 8 | Gen suspended 3
Result = 3
gen.icn : 3 | Gen resumed
Gen: More computing...
gen.icn : 10 | Gen suspended 7
Result = 7
gen.icn : 3 | Gen resumed
Gen: Still computing...
gen.icn : 12 | Gen suspended 13
Result = 13
gen.icn : 3 | Gen resumed
Gen: Out of gas...
gen.icn : 14 | Gen failed
gen.icn : 4 main failed

Fundamentals of the Icon Programming Language Slide 65
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Generator basics, continued

Recall the every loop:

every i := Gen() do
 write("Result = ", i)

every is a control structure that looks similar to while, but its
behavior is very different.

every evaluates the control expression and if a result is
produced, the body of the loop is executed. Then, the control
expression is resumed and if another result is produced, the loop
body is executed again. This continues until the control
expression fails.

Anthropomorphically speaking, every is never satisfied with
the result of the control expression.

Fundamentals of the Icon Programming Language Slide 66
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Generator basics, continued

For reference:

every i := Gen() do
 write("Result = ", i)

It is said that every drives a generator to failure.

Here is another way to drive a generator to failure:

write("Result = " || Gen()) & 1 = 0

Output:

Gen: Starting up...
Result = 3
Gen: More computing...
Result = 7
Gen: Still computing...
Result = 13
Gen: Out of gas...

Note: The preferred way to cause failure in an expression is to
use the &fail keyword. Evaluation of &fail always fails:

][&fail;
Failure

Fundamentals of the Icon Programming Language Slide 67
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Generator basics, continued

If a failure occurs during evaluation of an expression, Icon will
resume a suspended generator in hopes that another result will
lead to success of the expression.

A different main program to exercise Gen:

procedure main()
 while n := integer(read()) do {
 if n = Gen() then
 write("Found ", n)
 else
 write(n, " not found")
 }
end

Interaction:

3
Gen: Starting up...
Found 3
10
Gen: Starting up...
Gen: More computing...
Gen: Still computing...
Gen: Out of gas...
10 not found
13
Gen: Starting up...
Gen: More computing...
Gen: Still computing...
Found 13

This is an example of goal directed evaluation (GDE).

Fundamentals of the Icon Programming Language Slide 68
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Generator basics, continued

A generator can be used in any context that an ordinary
expression can be used in:

][write(Gen());
Gen: Starting up...
3
 r := 3 (integer)

][Gen() + 10;
Gen: Starting up...
 r := 13 (integer)

][repl("abc", Gen());
Gen: Starting up...
 r := "abcabcabc" (string)

There is no direct way to whether a procedure's result was
produced by return or suspend.

This version of double works just fine:

procedure double(n)
 suspend 2 * n
end

Usage:

][double(double(10));
 r2 := 40 (integer)

Fundamentals of the Icon Programming Language Slide 69
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

The generator to

Icon has many built-in generators. One is the to operator,
which generates a sequence of integers. Examples:

][every i := 3 to 7 do
... write(i);
3
4
5
6
7
Failure

][every i := -10 to 10 by 7 do
... write(i);
-10
-3
4
Failure

][every write(10 to 1 by -3);
10
7
4
1
Failure

][1 to 10;
 r := 1 (integer)

][8 < (1 to 10);
 r := 9 (integer)

][every write(8 < (1 to 10));
9
10
Failure

Fundamentals of the Icon Programming Language Slide 70
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

The generator to, continued

Problem: Without using every, write an expression that prints
the odd integers from 1 to 100.

Problem: Write an Icon procedure ints(first, last) that
behaves like to-by with an assumed "by" of 1.

Fundamentals of the Icon Programming Language Slide 71
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Backtracking and bounded expressions

Another way to print the odd integers between 1 and 100:

i := 1 to 100 & i % 2 = 1 & write(i) & &fail

This expression exhibits control backtracking—the flow of
control sometimes moves backwards.

In some cases backtracking is desirable and in some cases it is
not.

Expressions appearing as certain elements of control structures
are bounded. A bounded expression can produce at most one
result, thus limiting backtracking.

One example: Each expression in a compound expression is
bounded.

Contrast:

][i := 1 to 3 & write(i) & &fail;
1
2
3
Failure

][{ i := 1 to 3; write(i); &fail };
1
Failure

Fundamentals of the Icon Programming Language Slide 72
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Bounded expressions, continued

The mechanism of expression bounding is this: if a bounded
expression produces a result, generators in the expression are
discarded.

In while expr1 do expr2, both expressions are
bounded.

In every expr1 do expr2, only expr2 is bounded.

Consider

every i := 1 to 10 do write(i)

and

while i := 1 to 10 do write(i)

The latter is an infinite loop!

In an if-then-else, only the control expression is bounded:

if expr1 then expr2 else expr3

See page 91 in the text for the full list of bounded expressions.

Fundamentals of the Icon Programming Language Slide 73
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Bounded expressions, continued

Here is a generator that simply prints when it is suspended and
resumed:

procedure sgen(n)
 write(n, " suspending")
 suspend
 write(n, " resumed")
end

Notice the behavior of sgen with every:

][every sgen(1) do sgen(2);
1 suspending
2 suspending
1 resumed
Failure

Note that there is no way for a generator to detect that it is being
discarded.

Here is sgen with if-then-else:

][(if sgen(1) then sgen(2) else sgen(3)) & &fail;
1 suspending
2 suspending
2 resumed
Failure

][(if \sgen(1) then sgen(2) else sgen(3)) & &fail;
1 suspending
1 resumed
3 suspending
3 resumed
Failure

What would while sgen(1) do sgen(2)output?

Fundamentals of the Icon Programming Language Slide 74
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

The generator "bang" (!)

Another built-in generator is the unary exclamation mark, called
"bang".

It is polymorphic, as is the size operator (*). For character
strings it generates the characters in the string one at a time.

][every c := !"abc" do
... write(c);
a
b
c
Failure

][every write(!"abc");
a
b
c
Failure

][every write(!"");
Failure

A program to count vowels appearing on standard input:

procedure main()
 vowels := 0
 while line := read() do {
 every c := !line do
 if c == !"aeiouAEIOU" then
 vowels +:= 1
 }

 write(vowels, " vowels")
end

Fundamentals of the Icon Programming Language Slide 75
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

The generator "bang" (!), continued

If applied to a value of type file, ! generates the lines
remaining in the file.

The keyword &input represents the file associated with
standard input.

A simple line counter (lcount.icn):

procedure main()
 lines := 0

 every !&input do
 lines +:= 1

 write(lines, " lines")
end

Usage:

% lcount < lcount.icn
8 lines
% lcount < /dev/null
0 lines
% lcount < /etc/passwd
1620 lines

Problem: Change the vowel counter to use generation of lines
from &input?

Fundamentals of the Icon Programming Language Slide 76
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

The generator "bang" (!), continued

The line counter extended to count characters, too:

procedure main()
 chars := lines := 0

 every chars +:= *!&input + 1 do
 lines +:= 1

 write(lines, " lines, ", chars,
" characters")

end

If ! is applied to an integer or a real, the value is first converted
to a string and then characters are generated:

][.every !1000;
 "1" (string)
 "0" (string)
 "0" (string)
 "0" (string)

][.every !π
 "3" (string)
 "." (string)
 "1" (string)
 "4" (string)
 "1" (string)
 "5" (string)
 "9" (string)
 "2" (string)
 "6" (string)
 ...

Note that .every is an ie directive that drives a generator to
exhaustion, showing each result.

Fundamentals of the Icon Programming Language Slide 77
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Multiple generators

An expression may contain any number of generators:

][every write(!"ab", !"+-", !"cd");
a+c
a+d
a-c
a-d
b+c
b+d
b-c
b-d
Failure

Generators are resumed in a LIFO manner: the generator that
most recently produced a result is the first one resumed.

Another example:

][x := 1 to 10 & y := 1 to 10 & z := 1 to 10 &
x*y*z = 120 & write(x, " ", y, " ", z);

2 6 10

Problem: What are the result sequences of the following
expressions?

(0 to 20 by 2) = (0 to 20 by 3)

1 to !"1234"

(1 to 3) to (5 to 10)

Fundamentals of the Icon Programming Language Slide 78
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Multiple generators, continued

Problem: Write an expression that succeeds if strings s1 and s2
have any characters in common.

Problem: Write a program to read standard input and print all
the vowels, one per line.

Fundamentals of the Icon Programming Language Slide 79
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Multiple generators, continued

A program to show the distribution of the sum of three dice:

procedure main()
 every N := 1 to 18 do {
 writes(right(N,2), " ")
 every (1 to 6) + (1 to 6) + (1 to 6) = N do
 writes("*")
 write()
 }
end

Output:

 1
 2
 3 *
 4 ***
 5 ******
 6 **********
 7 ***************
 8 *********************
 9 *************************
10 ***************************
11 ***************************
12 *************************
13 *********************
14 ***************
15 **********
16 ******
17 ***
18 *

Problem: Generalize the program to any number of dice.

Fundamentals of the Icon Programming Language Slide 80
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Alternation

The alternation control structure looks like an operator:

expr1 | expr2

This creates a generator whose result sequence is the
the result sequence of expr1 followed by the result sequence of
expr2.

For example, the expression

3 | 7

has the result sequence {3, 7}.

The procedure Gen is in essence equivalent to the expression:

3 | 7 | 13

The expression

(1 to 5) | (5 to 1 by -1)

has the result sequence {1, 2, 3, 4, 5, 5, 4, 3, 2, 1}.

What are the result sequences of these expressions?

(1 < 0) | (0 = 1)

(1 < 0) | (0 ~= 1)

Gen() | (Gen() > 10) | (Gen() + 1)

Fundamentals of the Icon Programming Language Slide 81
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Alternation, continued

A result sequence may contain values of many types:

][every write(1 | 2 | !"ab" | real(Gen()));
1
2
a
b
Gen: Starting up...
3.0
Gen: More computing...
7.0
Gen: Still computing...
13.0
Gen: Out of gas...
Failure

Alternation used in goal-directed evaluation:

procedure main()
 while time := (writes("Time? ") & read()) do {
 if time = (10 | 2 | 4) then
 write("It's Dr. Pepper time!")
 }
end

Interaction:

% dptime
Time? 1
Time? 2
It's Dr. Pepper time!
Time? 3
Time? 4
It's Dr. Pepper time!

Fundamentals of the Icon Programming Language Slide 82
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Alternation, continued

A program to read lines from standard input and write out the
first twenty characters of each line:

procedure main()
 while line := read() do
 write(line[1:21])
end

Program output when provided the program itself as input:

 while line := re
 write(line[1

What happened?

Solution:

procedure main()
 while line := read() do
 write(line[1:(21|0)])
end

Output:

procedure main()
 while line := re
 write(line[1
end

What does this expression do?

write((3 | 7 | 13) > 10)

Fundamentals of the Icon Programming Language Slide 83
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Repeated alternation

An infinite result sequence can be produced with repeated
alternation,

| expr

which repeatedly generates the result sequence of expr.

The expression |1 has this result sequence:

{1, 1, 1, ...}

The expression |!"abc" has this result sequence:

{"a", "b", "c", "a", "b", "c", "a", ...}

What are the result sequences of the following expressions?

|1 = 2

9 <= |(1 to 10)

Fundamentals of the Icon Programming Language Slide 84
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Limitation

The limitation construct can be used to restrict a generator to a
maximum number of results.

General form:

expr1 \ expr2

One way to see if an "e" appears in the first twenty characters of
a string:

"e" == !s[1:20]

Another way:

"e" == !s\20

Which is better?

A common use of limitation is to restrict a computation to the
first result of a generator:

if f(Gen()\1) = n then ...

Problem: Using limitation create an expression whose result
sequence is {a, a, b, a, b, c, a, b, c, d} (all strings).

Fundamentals of the Icon Programming Language Slide 85
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

More on suspend

If suspend's expression is a generator, each result is
suspended in turn.

Example:

procedure updown(N)
 suspend 1 to N-1
 suspend N to 1 by -1
end

Usage:

][every write(updown(3));
1
2
3
2
1
Failure

The full form of suspend is similar to every:

suspend expr1 do
expr2

If expr1 yields a result, the value is suspended. When the
procedure is resumed, expr2 is evaluated, and the process
repeats until expr1 fails.

Fundamentals of the Icon Programming Language Slide 86
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Lists

Icon has a list data type. Lists hold sequences of values.

One way to create a list:

][[1,2,3];
 r := [1,2,3] (list)

A given list may hold values of differing types:

][L := [1, "two", 3.0, []];
 r := [1,"two",3.0,[]] (list)

An element of a list may be referenced by subscripting:

][L[1];
 r := 1 (integer)

][L[2];
 r := "two" (string)

][L[-1];
 r := [] (list)

][L[10];
Failure

The other way to create a list:

][list(5, "a");
 r := ["a","a","a","a","a"] (list)

Fundamentals of the Icon Programming Language Slide 87
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Lists, continued

A list section may be obtained by specifying two positions:

][L := [1, "two", 3.0, []];
 r := [1,"two",3.0,[]] (list)

][L[1:3];
 r := [1,"two"] (list)

][L[2:0];
 r := ["two",3.0,[]] (list)

Note the asymmetry between subscripting and sectioning:
subscripting produces an element, sectioning produces a list.

][L[2:3];
 r := ["two"] (list)

][L[2];
 r := "two" (string)

][L[2:2];
 r := [] (list)

Contrast with strings:

][s := "123";
 r := "123" (string)

][s[2:3];
 r := "2" (string)

][s[2:2];
 r := "" (string)

Question: What is the necessary source of this asymmetry?

Fundamentals of the Icon Programming Language Slide 88
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Lists, continued

Recall L:

][L;
 r := [1,"two",3.0,[]] (list)

Lists may be concatenated with |||:

][[1] ||| [2] ||| [3];
 r := [1,2,3] (list)

][L[1:3] ||| L[2:0];
 r := [1,"two","two",3.0,[]] (list)

Concatenating lists is like concatenating strings—a new list is
formed:

][L := [1, "two", 3.0, []];
 r := [1,"two",3.0,[]] (list)

][L := L ||| [9999] ||| L ||| [];
 r := [1,"two",3.0,[],9999,1,"two",3.0,[]]

For the code below, what is the final value of nines?

nines := []
every nines |||:= |[9] \ 7

Fundamentals of the Icon Programming Language Slide 89
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Lists, continued

The number of top-level elements in a list may be calculated
with *:

][L := [1, "two", 3.0, []];
 r := [1,"two",3.0,[]] (list)

][*L;
 r := 4 (integer)

][*[];
 r := 0 (integer)

Problem: What is the value of the following expressions?

*[[1,2,3]]

*[L, L,[[]]]

*[,,]

**[[],[]]

*(list(1000000,0) ||| list(1000000,1))

Fundamentals of the Icon Programming Language Slide 90
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Lists, continued

List elements can be changed via assignment:

][L := [1,2,3];
 r := [1,2,3] (list)

][L[1] := 10;
 r := 10 (integer)

][L[-1] := "last element";
 r := "last element" (string)

][L;
 r := [10,2,"last element"] (list)

List sections cannot be assigned to:

][L[1:3] := [];
Run-time error 111
variable expected
...

Problem: Write a procedure assign(L1, i, j, L2) that
approximates the operation L1[i:j] := L2.

Fundamentals of the Icon Programming Language Slide 91
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Complex subscripts and sections

Lists within lists can be referenced by a series of subscripts:

][L := [1,[10,20],[30,40]];
 r := [1,[10,20],[30,40]] (list)

][L[2];
 r := [10,20] (list)

][L[2][1];
 r := 10 (integer)

][L[2][1] := "abc";
 r := "abc" (string)

][L;
 r := [1,["abc",20],[30,40]] (list)

A series of subscripting operations to reference a substring of a
string-valued second-level list element:

][L[2][1];
 r := "abc" (string)

][L[2][1][2:0] := "pes";
 r := "pes" (string)

][L;
 r := [1,["apes",20],[30,40]] (list)

][every write(!L[2][1][2:4]);
p
e
Failure

Fundamentals of the Icon Programming Language Slide 92
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Lists as stacks and queues

The functions push, pop, put, get, and pull provide access
to lists as if they were stacks, queues, and double-ended queues.

push(L, expr) adds expr to the left end of list L and
returns L as its result:

][L := [];
 r := [] (list)

][push(L, 1);
 r := [1] (list)

][L;
 r := [1] (list)

][push(L, 2);
 r := [2,1] (list)

][push(L, 3);
 r := [3,2,1] (list)

][L;
 r := [3,2,1] (list)

Fundamentals of the Icon Programming Language Slide 93
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Lists as stacks and queues, continued

pop(L) removes the leftmost element of the list L and returns
that value. pop(L) fails if L is empty.

][L;
 r := [3,2,1] (list)

][while e := pop(L) do
... write(e);
3
2
1
Failure

][L;
 r := [] (list)

Note that the series of pops clears the list.

A program to print the lines in a file in reverse order:

procedure main()
 L := []
 while push(L, read())
 while write(pop(L))

end

With generators:

procedure main()
 L := []

every push(L, !&input)
every write(!L)

end

Fundamentals of the Icon Programming Language Slide 94
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Lists as stacks and queues, continued

push returns its first argument:

][x := push(push(push([],10),20),30);
 r := [30,20,10] (list)

][x;
 r := [30,20,10] (list)

put(L, expr) adds expr to the right end of L and returns L
as its result:

][L := ["a"];
 r := ["a"] (list)

][put(L, "b");
 r := ["a","b"] (list)

][every put(L, 1 to 3);
Failure

][L;
 r := ["a","b",1,2,3] (list)

Fundamentals of the Icon Programming Language Slide 95
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Lists as stacks and queues, continued

get(L), performs the same operation as pop(L), removing
the leftmost element of the list L and returning that value.
get(L) fails if L is empty.

Yet another way to print the numbers from 1 to 10:

L := []
every put(L, 1 to 10)
while write(get(L))

pull(L) removes the rightmost element of the list L and
returns that value. pull(L) fails if L is empty.

][L := [1,2,3,4];
 r := [1,2,3,4] (list)

][while write(pull(L));
4
3
2
1
Failure

][L;
 r := [] (list)

Any of the five functions push, pop, put, get, and pull can
be used in any combination on any list.

A visual summary:

push ==> ==> pull
pop <== List <== put
get <==

Fundamentals of the Icon Programming Language Slide 96
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

List element generation

When applied to lists, ! generates elements:

][.every ![1, 2, ["a", "b"], 3.0, write];
 1 (integer)
 2 (integer)
 ["a","b"] (list)
 3.0 (real)
 function write (procedure)

Problem: Write a procedure common(L1, L2, L3) that
succeeds if the three lists have an integer value in common.
Easy: Assume that the lists contain only integers. Hard: Don't
assume that.

Problem: Write procedures explode(s) and implode(L)
such as those found in ML.

][explode("test");
 r := ["t","e","s","t"] (list)

][implode(r);
 r := "test" (string)

Fundamentals of the Icon Programming Language Slide 97
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Sorting lists

The function sort(L) produces a sorted copy of the list L. L
is not changed.

][L := [5,1,10,7,-15];
 r := [5,1,10,7,-15] (list)

][Ls := sort(L);
 r := [-15,1,5,7,10] (list)

][L;
 r := [5,1,10,7,-15] (list)

][Ls;
 r := [-15,1,5,7,10] (list)

Lists need not be homogeneous to be sorted:

][sort(["a", 10, "b", 1, 2.0, &null]);
 r := [&null,1,10,2.0,"a","b"] (list)

Values are ordered first by type, then by value. Page 161 in the
text shows the type ordering used for heterogenous lists.

A program to sort lines of standard input:

procedure main()
 L := []
 while put(L, read())
 every write(!sort(L))
end

Problem: Describe two distinct ways to sort lines in descending
order.

Fundamentals of the Icon Programming Language Slide 98
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Sorting lists, continued

Sorting a list of lists orders the lists according to their order of
creation—not usually very useful.

The sortf(L, i) function sorts a list of lists according to the
i-th element of each list:

][L := [[1, "one"], [8, "eight"], [2, "two"]];
 r := [[1,"one"], [8,"eight"], [2,"two"]]

][sortf(L, 1);
 r := [[1,"one"],[2,"two"],[8,"eight"]]

][sortf(L, 2);
 r := [[8,"eight"], [1,"one"], [2,"two"]]

The value i can be negative, but not zero.

Lists without an i-th element sort ahead of other lists.

Fundamentals of the Icon Programming Language Slide 99
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Lists in a nutshell

• Create with [expr, ...] and list(N, value)

• Index and section like strings
Can't assign to sections

• Size and element generation like strings

• Concatenate with |||

• Stack/queue access with put, push, get, pop, pull
Parameters are consistent: list first, then value

• Sort with sort and sortf

Challenge:
Find another language where equivalent functionality can
be described as briefly.

Fundamentals of the Icon Programming Language Slide 100
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Reference semantics for lists

Some types in Icon use value semantics and others use reference
semantics.

Strings use value semantics:

][s1 := "string 1";
 r := "string 1" (string)

][s2 := s1;
 r := "string 1" (string)

][s2[1] := "x";
 r := "x" (string)

][s1;
 r := "string 1" (string)
][s2;
 r := "xtring 1" (string)

Lists use reference semantics:

][L1 := [1,2,3];
 r := [1,2,3] (list)

][L2 := L1;
 r := [1,2,3] (list)

][L2[1] := "x";
 r := "x" (string)

][L1;
 r := ["x",2,3] (list)

][L2;
 r := ["x",2,3] (list)

Fundamentals of the Icon Programming Language Slide 101
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Reference semantics for lists, continued

Earlier examples of list operations with ie have been edited.
What ie really shows for list values:

][lst1 := [1,2,3];
 r := L1:[1,2,3] (list)

][lst2 := [[],[],[]];
 r := L1:[L2:[],L3:[],L4:[]] (list)

The Ln tags are used to help identify lists that appear
multiple times:

][[lst1, lst1, [lst1]];
 r := L1:[L2:[1,2,3],L2,L3:[L2]] (list)

Consider this:

][lst := [1,2];
 r := L1:[1,2] (list)

][lst[1] := lst;
 r := L1:[L1,2] (list)

Then this:

][lst[1][2] := 10;
 r := 10 (integer)

][lst;
 r := L1:[L1,10] (list)

Fundamentals of the Icon Programming Language Slide 102
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Reference semantics for lists, continued

More:

][X := [1,2,3];
 r := L1:[1,2,3] (list)

][push(X,X);
 r := L1:[L1,1,2,3] (list)

][put(X,X);
 r := L1:[L1,1,2,3,L1] (list)

][X[3] := [[X]];
 r := L1:[L2:[L3:[L3,1,L1,3,L3]]] (list)

][X;
 r := L1:[L1,1,L2:[L3:[L1]],3,L1] (list)

Explain this:

][L := list(5,[]);
 r := L1:[L2:[],L2,L2,L2,L2] (list)

Fundamentals of the Icon Programming Language Slide 103
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Reference semantics for lists, continued

An important aspect of list semantics is that equality of two list-
valued expressions is based on whether the expressions
reference the same list object in memory.

][lst1 := [1,2,3];
 r := L1:[1,2,3] (list)

][lst2 := lst1;
 r := L1:[1,2,3] (list)

][lst1 === lst2;
 r := L1:[1,2,3] (list)

][lst2 === [1,2,3];
Failure

][[1,2,3] === [1,2,3];
Failure

][[] === [];
Failure

Fundamentals of the Icon Programming Language Slide 104
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Reference semantics for lists, continued

Icon uses call-by-value for transmission of argument values to a
procedure.

However, an argument is a type such as a list, which uses
reference semantics, the value passed is a reference to the list
itself. Changes made to the list will be visible to the caller.

An extension of the procedure double to handle lists:

procedure double(x)
 if type(x) == "string" then
 return x || x
 else if numeric(x) then
 return 2 * x
 else if type(x) == "list" then {
 every i := 1 to *x do
 x[i] := double(x[i])
 return x
 }
 else
 fail
end

Usage: (note that L is changed)

][L := [3, "abc", [4.5, ["xx"]]];
 r := [3, "abc", [4.5, ["xx"]]] (list)

][double(L);
 r := [6, "abcabc", [9.0, ["xxxx"]]] (list)

][L;
 r := [6, "abcabc", [9.0, ["xxxx"]]] (list)

Fundamentals of the Icon Programming Language Slide 105
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

image and Image

Lists cannot be output with the write function. To output
lists, the image and Image routines may be used.

The built-in function image(X)produces a string
representation of any value:

][image(1);
 r := "1" (string)

][image("s");
 r := "\"s\"" (string)

][write(image("s"));
"s"
 r := "\"s\"" (string)

][image(write);
 r := "function write" (string)

][image([1,2,3]);
 r := "list_13(3)" (string)

For lists, image only shows a "serial number" and the size.

Fundamentals of the Icon Programming Language Slide 106
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

image and Image, continued

The Icon procedure Image can be used to produce a complete
description of a list (or any value):

][write(Image([1,2,[],4]));
L3:[
 1,
 2,
 L4:[],
 4]
 r := "L3:[\n 1,\n 2,\n L4:[],\n 4]"

Note that Image produces a string, which in this case contains
characters for formatting.

An optional second argument of 3 causes Image to produce a
string with no formatting characters:

][write(Image([1,2,[],4], 3));
L8:[1,2,L9:[],4]
 r := "L8:[1,2,L9:[],4]" (string)

Image is not a built-in function; it must be linked:

link image
procedure main()
 ...
end

Fundamentals of the Icon Programming Language Slide 107
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Simple text processing with split

A number of text processing problems can be addressed with
a simple concept: splitting a line into pieces based on
delimiters and then processing those pieces.

There is a procedure split(s, delims) that returns a list
consisting of the portions of the string s delimited by
characters in delims:

][split("just a test here ", " ");
 r := ["just","a","test","here"] (list)

][split("...1..3..45,78,,9 10 ", "., ");
 r := ["1","3","45","78","9","10"] (list)

split is not a built-in function; it must be linked:

link split
procedure main()

...
end

Fundamentals of the Icon Programming Language Slide 108
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

split, continued

Consider a file whose lines consist of zero or more integers
separated by white space:

5 10 0 50

200
1 2 3 4 5 6 7 8 9 10

A program to sum the numbers in such a file:

link split
procedure main()
 sum := 0
 while line := read() do {
 nums := split(line, " \t")
 every num := !nums do
 sum +:= num
 }

 write("The sum is ", sum)
end

Problem: Trim down that flabby code!

procedure main()
 sum := 0

 write("The sum is ", sum)
end

If split has a third argument that is non-null, both
delimited and delimiting pieces of the string are produced:

][split("520-621-6613", "-", 1);
 r := ["520","-","621","-","6613"] (list)

Fundamentals of the Icon Programming Language Slide 109
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

split, continued

Write a procedure extract(s, m, n) that extracts a portion of a
string s that represents a hierarchical data structure. m is a major
index and n is a minor index. Major sections of the string are
delimited by slashes and are composed of minor sections separated by
colons. Here is a sample string:

/a:b/apple:orange/10:2:4/xyz/

It has four major sections which in turn have two, two, three and one
minor sections.

A call such as extract(s, 3, 2) locates the third major section
("10:2:4") and return the second minor section ("2").

][extract(s, 1, 2);
 r := "b" (string)

][extract(s, 4, 1);
 r := "xyz" (string)

][extract(s, 4, 2);
Failure

Fundamentals of the Icon Programming Language Slide 110
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Command line arguments

The command line arguments for an Icon program are passed to
main as a list of strings.

procedure main(a)
 write(*a, " arguments:")
 every write(image(!a))
end

Execution:

% args just "a test" right here
4 arguments:
"just"
"a test"
"right"
"here"
% args
0 arguments:
%

Problem: Write a program picklines that reads lines from
standard input and prints ranges of lines specified by
command line arguments. Lines may be referenced from the
end of file, with the last line being -1.

Examples:

picklines 1 2 3 2 1 < somefile

picklines 1..10 30 40 50 < somefile

picklines 1..10 -10..-1 < somefile

Fundamentals of the Icon Programming Language Slide 111
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

picklines—Solution

link split
procedure main(args)
 lines := []
 while put(lines, read())

 picks := []
 every spec := !args do {
 w := split(spec, ".")
 every put(picks, lines[w[1]:w[-1]+1])
 }

 every write(!!picks)
end

Fundamentals of the Icon Programming Language Slide 112
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Random value selection

The polymorphic unary ? operator is used to produce
random values.

If applied to an integer N > 0, an integer between 1 and N
inclusive is produced:

][?10;
 r := 3 (integer)

][?10;
 r := 5 (integer)

][?10;
 r := 4 (integer)

Problem: Write a procedure ab() that, on average, returns
"a" 25% of the time and "b" 75% of the time.

The same random sequence is produced every run by
default, but the "generator" can be seeded by assigning a
value to &random. A simple seeder:

][&clock;
 r := "17:10:46" (string)

][&random := &clock[-2:0];
 r := 25 (integer)

Fundamentals of the Icon Programming Language Slide 113
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Random value selection, continued

If ? is applied to a string, a random character from the string
is produced:

][?"random";
 r := "n" (string)

][?"random";
 r := "m" (string)

Applying ? to a list produces a random element:

][?[10,0,"thirty"];
 r := 10 (integer)

][?[10,0,"thirty"];
 r := "thirty" (string)

][??[10,0,"thirty"];
 r := 0.6518579154 (real)

If ? is applied to zero a real number in the range 0.0 to 1.0 is
produced:

][?0;
 r := 0.05072018769 (real)

][?0;
 r := 0.716947168 (real)

Problem: Write the procedure ab() in another way.

Fundamentals of the Icon Programming Language Slide 114
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Random value selection, continued

When applied to strings and lists, the result of ? is a
variable, and can be assigned to. Example:

procedure main()
 line := "Often wrong; never unsure!"
 every 1 to 10 do {
 ?line :=: ?line
 write(line)
 }
end

Output:

Oftengwron ; never unsure!
Oftengwrnn ; oever unsure!
Oftengw nnr; oever unsure!
Ofuengw nnr; oever tnsure!
O uengw nnr; oeverftnsure!
O unngw enr; oeverftnsure!
O unngw enr; eevorftnsure!
O unngw enr; efvoretnsure!
O unngt enr; efvorewnsure!
O unngt unr; efvorewnsere!

Problem: Write a procedure mutate(s,n) that does n
random swaps of the "words" in the string s.

Fundamentals of the Icon Programming Language Slide 115
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Random value selection, continued

Problem: Write a program that generates test data for a
program that finds the longest line(s) in a file.

Fundamentals of the Icon Programming Language Slide 116
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Variable length argument lists

In some cases it is useful for a procedure to handle any
number of arguments.

Here is a procedure that calculates the sum of its arguments:

procedure sum(nums[])
 total := 0

 every total +:= !nums
 return total
end

Usage:

][sum(5,8,10);
 r := 23 (integer)

][sum();
 r := 0 (integer)

][sum(1,2,3,4,5,6,7);
 r := 28 (integer)

Fundamentals of the Icon Programming Language Slide 117
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Variable length argument lists, continued

One or more parameters may precede a final parameter
designated to collect additional arguments.

Consider a very simplistic C-like printf:

][printf("e = %, pi = %\n", &e, &pi);
e = 2.718281828459045, pi = 3.141592653589793

Implementation:

procedure printf(format, vals[])
 i := 0
 every e := !split(format, "%", 1) do
 if e == "%" then
 writes(vals[i+:=1])
 else
 writes(e)
 return
end

Fundamentals of the Icon Programming Language Slide 118
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Procedures as values

Icon has a procedure type. Names of built-in functions such
as write and Icon procedures such as double are simply
variables whose value is a procedure.

Suppose you'd rather use "println" than "write":

global println
procedure main()
 println := write

...
end

procedure f()
println("in f()...")

end

Consider this program:

procedure main()
 write :=: read
 while line := write() do

 read(line)
end

Fundamentals of the Icon Programming Language Slide 119
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Procedures as values, continued

A procedure may be passed as an argument to a procedure.

Here is a procedure that calls the procedure p with each
element of L in turn, forming a list of the results:

procedure map(p, L)
 result := []

every e := !L do
 put(result, p(e) | &null)

 return result
end

Usage: (with double from slide 42)

][vals := [1, "two", 3];
 r := L1:[1,"two",3] (list)

][map(double, vals);
 r := L1:[2,"twotwo",6] (list)

A computation may yield a procedure:

f()(a, b)

x := (p1 | p2 | p3)(7,11)

point: = (?[up, down])(x,y)

Fundamentals of the Icon Programming Language Slide 120
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String invocation

It is possible to "invoke" a string:

]["+"(3,4);
 r := 7 (integer)

]["*"(&lcase);
 r := 26 (integer)

][(?"+*")(12,3);
 r := 15 (integer)

Consider a simple evaluator:

Expr? 3 + 9
12
Expr? 5 ^ 10
9765625

Expr? abc repl 5
abcabcabcabcabc

Expr? xyz... trim .
xyz

Implementation:

invocable all
procedure main()
 while writes("Expr? ") &
 e := split(read()) do
 write(e[2](e[1],e[3]))
end

Fundamentals of the Icon Programming Language Slide 121
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String invocation, continued

Some details on string invocation:

• Operators with unary and binary forms are
distinguished by the number of arguments supplied:

][star := "*";
 r := "*" (string)

][star(4);
 r := 1 (integer)

][star(4,7);
 r := 28 (integer)

• User defined procedures can be called.

• The "invocable all" prevents unreferenced
procedures from being discarded.

• proc() and args() are sometimes useful when using
string invocation.

Fundamentals of the Icon Programming Language Slide 122
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Mutual evaluation

One way to evaluate a series of expressions and, if all
succeed, produce the value of the final expression is this:

expr1 & expr2 & ... & exprN

The same computation can be expressed with mutual
evaluation:

(expr1, expr2, ..., exprN)

If a value other than the result of the last expression is
desired, an expression number can be specified:

][3(10,20,30,40);
 r := 30 (integer)

][.every 1(x := 1 to 10, x * 3 < 10);
 1 (integer)
 2 (integer)
 3 (integer)

The expression number can be negative:

.every (-2)(x := 1 to 10, x * 3 < 10);

Now you can understand error 106:

][bogus();
Run-time error 106
procedure or integer expected
offending value: &null

Fundamentals of the Icon Programming Language Slide 123
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Mutual evaluation, continued

One use of mutual evaluation is to "no-op" a routine.

Consider this:

global debug
procedure main()

...
debug := write
...

end

procedure f(x)
debug("In f(), x = ", x)
...

end

To turn off debugging output:

debug := 1

Fundamentals of the Icon Programming Language Slide 124
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

File I/O

Icon has a file type and three built-in files: &input,
&output, and &errout. These are associated with the
standard input, standard output, and error output streams.

By default:
read() reads from &input
write() and writes() output to &output
stop() writes to &errout

The open(name,mode) function opens the named file for
input and/or output (according to mode) and returns a value
of type file. Example:

wfile := open("dictionary.txt", "r")

A file can be specified as the argument for read:

line := read(wfile)

A file can be specified as an argument to write:

logfile := open("log."||getdate(), "w")
write(logfile, "Log created at ", &dateline)

It is seldom used but any number of arguments to write
can be files:

write("abc", logfile, "xyz", &output, "pdq")

This results in "abcpdq" being written to standard output,
and "xyz" being written to logfile.

Fundamentals of the Icon Programming Language Slide 125
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

File I/O, continued

A very simple version of the cp command:

procedure main(a)
 in := open(a[1]) |
 stop(a[1], ": can't open for input")

 out := open(a[2], "w") |
 stop(a[2], ": can't open for output")

 while line := read(in) do
 write(out, line)
end

Usage:

% cp0 /etc/motd x
% cp0 /etc/motdxyz x
/etc/motdxyz: can't open for input
% cp0 x /etc/passwd
/etc/passwd: can't open for output

Common bug: Opening a file but forgetting to pass it to
read().

Fundamentals of the Icon Programming Language Slide 126
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

File I/O, continued

The read() function is designed for use with line by line
input and handles OS-specific end-of-line issues.

The reads(f,n) function is designed for reading binary
data. It reads n bytes from the file f and returns a string.

Here is a program that reads files named on the command
line and prints out the number of bytes and null bytes (zero
bytes) in the file:

procedure main(a)
 every fname := !a do {
 f := open(fname, "ru")
 bytes := nulls := 0
 while buf := reads(f, 1024) do {
 bytes +:= *buf
 every !buf == "\x00" do
 nulls +:= 1
 }

 write(fname, ": ", bytes, " bytes, ",
 nulls, " nulls")
 }
end

Usage:

% countnulls countnulls.icn countnulls
countnulls.icn: 289 bytes, 0 nulls
countnulls: 1302 bytes, 620 nulls

Other built-in functions related to files include rename,
remove, seek, and where.

Fundamentals of the Icon Programming Language Slide 127
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

I/O with pipes

If the open mode includes "p", the name is considered to be
a command, which is started, and a pipe is opened to the
process.

Here is a program that reads the output of the who command
and reports the number of users:

procedure main()
 who_data := open("who", "rp")

 num_users := 0
 while read(who_data) & num_users +:= 1

 write(num_users, " users logged in")
end

Usage:

% nusers
73 users logged in

Fundamentals of the Icon Programming Language Slide 128
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

I/O with pipes, continued

Here is a program that opens a pipe to the ed text editor and
sends it a series of commands to delete lines from a file:

procedure main(a)
 ed := open("ed "||a[1]||" >/dev/null", "wp")|
 stop("oops!?")

 every num := !a[2:0] do
 write(ed, num, "d")

 write(ed, "w")
 write(ed, "q")
end

Usage:

% cat five
1
2
3
4
5
% dellines five 2 4
% cat five
1
3
4
%

Unfortunately, bi-directional pipes are not supported.

Fundamentals of the Icon Programming Language Slide 129
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Tables

Icon's table data type can be thought of as an array that
can be subscripted with values of any type.

The built-in function table is used to create a table:

][t := table();
 r := T1:[] (table)

To store values in a table, simply assign to an element
specified by a subscript (sometimes called a key):

][t[1000] := "x";
 r := "x" (string)

][t[3.0] := "three";
 r := "three" (string)

][t["abc"] := [1];
 r := L1:[1] (list)

Values are referenced by subscripting.

][t["abc"];
 r := L1:[1] (list)

][t[1000];
 r := "x" (string)

Fundamentals of the Icon Programming Language Slide 130
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Tables, continued

Tables can't be output with write(), but Image can
describe the contents of a table:

][write(Image(t));
T1:[
 1000->"x",
 3.0->"three",
 "abc"->L1:[1]
]

Assigning a value using an existing key simply causes the
old value to be replaced:

][t[3.0] := "Here's 3.0";
 r := "Here's 3.0" (string)

][t["abc"] := "xyz";
 r := "xyz" (string)

][t[1000] := &null;
 r := &null (null)

][write(Image(t));
T2:[
 1000->&null,
 3.0->"Here's 3.0",
 "abc"->"xyz"]

Fundamentals of the Icon Programming Language Slide 131
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Tables, continued

If a non-existent key is specified, the table's default value is
produced. The default default-value is &null:

][t := table();
 r := T1:[] (table)

][t[999];
 r := &null (null)

A default value may be specified as the argument to table:

][t2 := table(0);
 r := T1:[] (table)

][t2["xyz"];
 r := 0 (integer)

][t2["abc"] +:= 1;
 r := 1 (integer)

][t2["abc"];
 r := 1 (integer)

][t3 := table("not found");
 r := T1:[] (table)

][t3[50];
 r := "not found" (string)

Language design issue: References to non-existent list
elements fail, but references to non-existent table elements
succeed and produce an object that can be assigned to. Is
that good or bad?

Fundamentals of the Icon Programming Language Slide 132
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Tables, continued

A key quantity represented with multiple types produces
multiple key/value pairs.

][t := table();
 r := T1:[] (table)

][t[1] := "integer";
 r := "integer" (string)

][t["1"] := "string";
 r := "string" (string)

][t[1.0] := "real";
 r := "real" (string)

][write(Image(t));
T1:[
 1->"integer",
 1.0->"real",
 "1"->"string"]

][t[1];
 r := "integer" (string)

][t["1"];
 r := "string" (string)

Be wary of using reals as table keys. Example:

][t[1.000000000000001];
 r := &null (null)

][t[1.0000000000000001];
 r := "real" (string)

Fundamentals of the Icon Programming Language Slide 133
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Table application: word usage counter

A simple program to count the number of occurrences of
each "word" read from standard input:

link split, image
procedure main()
 wordcounts := table(0)

 while line := read() do
 every word := !split(line) do
 wordcounts[word] +:= 1

 write(Image(wordcounts))
end

Interaction:

% wordtab
to be or
not to be
^D
T1:[
 "be"->2,
 "not"->1,
 "or"->1,
 "to"->2]

Question: How could we also print the number of distinct
words found in the input?

Image is great for debugging, but not suitable for end-user
output.

Fundamentals of the Icon Programming Language Slide 134
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Table sorting

Applying the sort function to a table produces a list
consisting of two-element lists holding key/value pairs.

Example:

][write(Image(wordcounts));
T1:[
 "be"->2,
 "not"->1,
 "or"->1,
 "to"->2]

][write(Image(sort(wordcounts)));
L1:[
 L2:["be", 2],
 L3:["not", 1],
 L4:["or", 1],
 L5:["to", 2]]

sort takes an integer-valued second argument that defaults
to 1, indicating to produce a list sorted by keys. An
argument of 2 produces a list sorted by values:

][write(Image(sort(wordcounts,2)));
L1:[
 L2:["not", 1],
 L3:["or", 1],
 L4:["to", 2],
 L5:["be", 2]]

sort's second argument may also be 3 or 4, which produces
"flattened" versions of the results produced with 1 or 2,
respectively.

Fundamentals of the Icon Programming Language Slide 135
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Table sorting, continued

An improved version of wordtab that uses sort:

link split, image
procedure main()
 wordcounts := table(0)

 while line := read() do
 every word := !split(line) do
 wordcounts[word] +:= 1

 pairs := sort(wordcounts, 2)
 every pair := !pairs do
 write(pair[1], "\t", pair[2])
end

Output:

not 1
or 1
to 2
be 2

Problem: Print the most frequent words first rather than last.

Fundamentals of the Icon Programming Language Slide 136
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Tables—default value pitfall

Recall this pitfall with the list(N, value) function:

][list(5,[]);
 r1 := L1:[L2:[],L2,L2,L2,L2] (list)

There is a similar pitfall with tables:

If [] is specified as the default value, all references to
non-existent keys produce the same list.

Example:

][t := table([]);
 r := T1:[] (table)

][put(t["x"], 1);

][put(t["y"], 2);

][t["x"];
 r := L1:[1,2] (list)

][t["y"];
 r := L1:[1,2] (list)

][[t["x"], t["y"]];
 r := L1:[L2:[1,2],L2] (list)

][[t["x"], t["y"], t["z"]];
 r := L1:[L2:[1,2],L2,L2] (list)

Solution: Stay tuned!

Fundamentals of the Icon Programming Language Slide 137
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Table application: Cross reference

Consider a program that prints a cross reference listing that
shows the lines on which each word appears.

% xref
to be or
not to be is not
going to be
the question
^D
be.............1 2 3
going..........3
is.............2
not............2 2
or.............1
question.......4
the............4
to.............1 2 3

Problem: Sketch out a solution.

Fundamentals of the Icon Programming Language Slide 138
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Cross reference solution

procedure main()
 refs := table()
 line_num := 0

 while line := read() do {
 line_num +:= 1
 every w := !split(line) do {
 /refs[w] := []
 put(refs[w], line_num)
 }
 }

 every pair := !sort(refs) do {
 writes(left(pair[1],15,"."))
 every writes(!pair[2]," ")
 write()
 }
end

Question: Are lists really needed in this solution?

Another approach:

procedure main()
 refs := table([]) # BE CAREFUL!
 line_num := 0

 while line := read() do {
 line_num +:= 1

 every w := !split(line) do
 refs[w] |||:= [line_num]
 }

...
end

Fundamentals of the Icon Programming Language Slide 139
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Tables and generation

When applied to a table, ! generates the values in the table.

Consider a table romans that maps roman numerals to
integers:

][write(Image(romans));
T1:[
 "I"->1,
 "V"->5,
 "X"->10]

][.every !romans;
 10 (integer)
 1 (integer)
 5 (integer)

The key(t) function generates the keys in table t:

][.every key(romans);
 "X" (string)
 "I" (string)
 "V" (string)

][.every romans[key(romans)];
 10 (integer)
 1 (integer)
 5 (integer)

Language design question: What is the Right Thing for !t to
generate?

Fundamentals of the Icon Programming Language Slide 140
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Table key types

Any type can be used as a table key.

][t := table();

][A := [];
][B := ["b"];

][t[A] := 10;
][t[B] := 20;
][t[t] := t;

][write(Image(t));
T2:[
 L1:[]->10,
 L2:[
 "b"]->20,
 T2->T2]

Table lookup is identical to comparison with the ===
operator, using value semantics for scalar types and
reference semantics for structure types.

][A;
 r := L3:[] (list)
][t[A];
 r := 10 (integer)
][t[[]];
 r := &null (null)

][get(B);
 r := "b" (string)
][B;
 r := L3:[] (list)
][t[B];
 r := 20 (integer)

Fundamentals of the Icon Programming Language Slide 141
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Table application: Cyclic list counter

Consider a procedure lists(L) to count the number of
unique lists in a potentially cyclic list:

][lists([]);
 r := 1 (integer)

][lists([[],[]]);
 r := 3 (integer)

][A := [];
][put(A,A);
][put(A,[A]);
][A;
 r := L1:[L1,L2:[L1]] (list)

][lists(A);
 r := 2 (integer)

Implementation:

procedure lists(L, seen)
 /seen := table()

 if \seen[L] then return 0

 count := 1
 seen[L] := 1 # any non-null value would do

 every e := !L & type(e) == "list" do
 count +:= lists(e, seen)
 return count
end

Problems: Write lcopy(L) and lcompare(L1,L2), to
copy and compare lists.

Fundamentals of the Icon Programming Language Slide 142
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

csets—sets of characters

Icon's cset data type is used to represent sets of characters.

In strings, the order of the characters is important, but in a
cset, only membership is significant.

A cset literal is specified using apostrophes. Characters in
a cset are shown in collating order:

]['abcd';
 r := 'abcd' (cset)

]['bcad';
 r := 'abcd' (cset)

]['babccabc';
 r := 'abc' (cset)

]['babccabdbaab';
 r := 'abcd' (cset)

Equality of csets is based only on membership:

]['abcd' === 'bcad' === 'bcbbbbabcd';
 r := 'abcd' (cset)

(In other words, csets have value semantics.)

If c is a cset, *c produces the number of characters in the
set.

For !c, the cset is converted to a string and then characters
are generated.

Fundamentals of the Icon Programming Language Slide 143
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

csets, continued

Strings are freely converted to character sets and vice-versa.

The second argument for the split procedure is actually a
character set, not a string. Because of the automatic
conversion, this works:

split("...1..3..45,78,,9 10 ", "., ")

But more properly it is this:

split("...1..3..45,78,,9 10 ", '., ')

Curio: Converting a string to a cset and back sorts the
characters and removes the letters.

][string(cset("tim korb"));
 r := " bikmort" (string)

Fundamentals of the Icon Programming Language Slide 144
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

csets, continued

A number of keywords provide handy csets:

][write(&digits);
0123456789
 r := &digits (cset)

][write(&lcase);
abcdefghijklmnopqrstuvwxyz
 r := &lcase (cset)

][write(&ucase);
ABCDEFGHIJKLMNOPQRSTUVWXYZ
 r := &ucase (cset)

Others:
&ascii The 128 ASCII characters
&cset All 256 characters in Icon's "world"
&letters The union of &lcase and &ucase

Fundamentals of the Icon Programming Language Slide 145
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

csets, continued

The operations of union, intersection, difference, and
complement (with respect to &cset) are available on csets:

]['abc' ++ 'cde'; # union
 r := 'abcde' (cset)

]['abc' ** 'cde'; # intersection
 r := 'c' (cset)

]['abc' -- 'cde'; # difference
 r := 'ab' (cset)

][*~'abc'; # complement
 r := 253 (integer)

Problem: Create csets representing the characters that may
occur in:

(a) A real literal

(b) A Java identifier

(c) A UNIX filename

Problem: Print characters in string s1 that are not in string
s2.

Fundamentals of the Icon Programming Language Slide 146
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

csets, continued

Problem: Using csets, write a program to read standard input
and calculate the number of distinct characters encountered.

Problem: Print the numbers in this string (s).

On February 14, 1912, Arizona became the 48th
state.

Fundamentals of the Icon Programming Language Slide 147
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Sets

A set can be created with the set(L) function, which
accepts a list of initial values for the set:

][s := set([1,2,3]);
 r := S1:[2,1,3] (set)

][s2 := set(["x", 1, 2, "y", 1, 2, 3, "x"]);
 r := S1:[2,"x",1,3,"y"] (set)

][s3 := set(split("to be or not to be"));
 r := S1:["to","or","not","be"] (set)

][set([[],[],[]]);
 r := S1:[L1:[],L2:[],L3:[]] (set)

][s4 := set();
 r8 := S1:[] (set)

Values in a set are unordered. All values are unique, using
the same notion of equality as the === operator.

The unary *, !, and ? operators do what you'd expect:

][*s2;
 r := 5 (integer)

][.every !s;
 2 (integer)
 1 (integer)
 3 (integer)

][?s2;
 r := "y" (string)

Sets were a late addition to the language.

Fundamentals of the Icon Programming Language Slide 148
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Sets, continued

The insert(S, x) function adds the value x to the set S,
if not already present, and returns S. It always succeeds.

The delete(S, x) function removes the value x from S
and returns S. It always succeeds.

The member(S, x) function succeeds iff S contains x.

Examples:

][every insert(s,!"testing");
Failure

][s;
 r := S1:["s","e","g","t","i","n"] (set)

][insert(s, "s");
 r := S1:["s","e","g","t","i","n"] (set)

][every delete(s, !"aieou");
Failure

][s;
 r := S1:["s","g","t","n"] (set)

][member(s, "a");
Failure

][member(s, "t");
 r := "t" (string)

Fundamentals of the Icon Programming Language Slide 149
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Sets, continued

Set union, intersection, and difference are supported:

][fives := set([5,10,15,20,25]);
 r := S1:[5,10,15,20,25] (set)

][tens := set([10,20,30]);
 r := S1:[10,20,30] (set)

][fives ** tens;
 r := S1:[10,20] (set)

][fives ++ tens;
 r := S1:[5,10,15,20,25,30] (set)

][fives -- tens;
 r := S1:[5,15,25] (set)

][tens -- fives;
 r := S1:[30] (set)

Problem: Write a program that reads an Icon program on
standard input and prints the unique identifiers. Assume that
reserved() generates a list of reserved words such as "if"
and "while", which should not be printed.

Fundamentals of the Icon Programming Language Slide 150
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Sets and tables—common functions

The insert, delete, and member functions can be
applied to tables:

][t := table();
 r := T1:[] (table)

][t["x"] := 10;
 r := 10 (integer)

][insert(t, "v", 5);
 r := T1:["v"->5,"x"->10] (table)

][member(t, "i");
Failure

][delete(t, "v");
 r := T1:["x"->10] (table)

Note that the only way to truly delete a value from a table is
with the delete function:

][t["x"] := &null; # the key remains...
 r := &null (null)

][t;
 r := T1:["x"->&null] (table)

][delete(t, "x");
 r := T1:[] (table)

Fundamentals of the Icon Programming Language Slide 151
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Records

Icon provides a record data type that is simply an aggregate
of named fields.

A record declaration names the record and the fields.
Examples:

record name(first, middle, last)

record point(x,y)

record declarations are global and appear at file scope.

A record is created by calling the record constructor.

][p := point(3,4);
 r := R1:point_1(3,4) (point)

][type(p);
 r := "point" (string)

][p.x;
 r := 3 (integer)

][p.y;
 r := 4 (integer)

][p2 := point(,3);
 r := R1:point_3(&null,3) (point)

][type(point);
 r1 := "procedure" (string)

][image(point);
 r2 := "record constructor point" (string)

Fundamentals of the Icon Programming Language Slide 152
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Records, continued

A simple example:

record point(x,y)
record line(a, b)

procedure main()
 A := point(0,0)
 B := point(3,4)

 AB := line(A,B)
 write("Length: ", length(AB))

 move(A,-3,-4)
 write("New length: ", length(AB))
end

procedure length(ln)
 return sqrt((ln.a.x-ln.b.x)^2 +
 (ln.a.y-ln.b.y)^2)
end

procedure move(p, dx, dy)
 p.x +:= dx
 p.y +:= dy
end

Output:

Length: 5.0
New length: 10.0

Problem: Modify move() so that a new point is created,
rather than modifying the referenced point.

Fundamentals of the Icon Programming Language Slide 153
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Records, continued

A routine to produce a string representation of a point:

procedure ptos(p)
 return "(" || p.x || "," || p.y || ")"
end

Records can be meaningfully sorted with sortf:

][pts := [point(0,1), point(2,0), point(-3,4)];

][every write(ptos(!sortf(pts,1)));
(-3,4)
(0,1)
(2,0)
Failure

][every write(ptos(!sortf(pts,2)));
(2,0)
(0,1)
(-3,4)
Failure

Fields in a record can be accessed with a subscript:

][pt := point(3,4);

][pt[2];
 r := 4 (integer)

Fundamentals of the Icon Programming Language Slide 154
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning basics

Icon's string scanning facility is used for analysis of strings.

The string scanning facility allows string analysis operations
to be intermixed with general computation.

String scanning is initiated with ?, the scanning operator:

expr1 ? expr2

The value of expr1 is established as the subject of the scan
(&subject) and the scanning position in the subject (&pos)
is set to 1. expr2 is then evaluated.

]["testing" ? { write(&subject); write(&pos) };
testing
1
 r := 1 (integer)

The result of the scanning expression is the result of expr2.

The procedure snap() displays &subject and &pos:

]["testing" ? snap();
&subject = t e s t i n g
&pos = 1 |
 r := &null (null)

Fundamentals of the Icon Programming Language Slide 155
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning—move(n)

The built-in function move(n) advances &pos by n and
returns the substring of &subject between the old and new
values of &pos. move(n) fails if n is too large.

]["testing" ? {
... snap()
... move(1)
... snap()
... write(move(2))
... snap()
... write(move(2))
... snap()
... write(move(10))
... snap()
... };

first snap():
&subject = t e s t i n g
&pos = 1 |

move(1):
&subject = t e s t i n g
&pos = 2 |

write(move(2)):
es
&subject = t e s t i n g
&pos = 4 |

write(move(2)):
ti
&subject = t e s t i n g
&pos = 6 |

write(move(10)):
&subject = t e s t i n g
&pos = 6 |

Fundamentals of the Icon Programming Language Slide 156
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning—move(n), continued

&pos can be thought of as a scanning "cursor". move(n)
adjusts &pos (the cursor) by n, which can be negative.

 A scanning expression that iterates:

]["testing" ? while move(1) do {
... snap()
... write(move(1))
... };

&subject = t e s t i n g
&pos = 2 |
e

&subject = t e s t i n g
&pos = 4 |
t

&subject = t e s t i n g
&pos = 6 |
n

&subject = t e s t i n g
&pos = 8 |
Failure

Negative movement:

]["testing" ? { move(5); snap();
... write(move(-3)); snap()};
&subject = t e s t i n g
&pos = 6 |
sti
&subject = t e s t i n g
&pos = 3 |

Fundamentals of the Icon Programming Language Slide 157
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning—move(n), continued

Example: segregation of characters in odd and even
positions:

][ochars := echars := "";
 r := "" (string)

]["12345678" ? while ochars ||:= move(1) do
... echars ||:= move(1);
Failure

][ochars;
 r := "1357" (string)

][echars;
 r := "2468" (string)

Does this work properly with an odd number of characters in
the subject string? How about an empty string as the
subject?

Fundamentals of the Icon Programming Language Slide 158
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning—tab(n)

The built-in function tab(n) sets &pos to n and returns the
substring of &subject between the old and new positions.
tab(n) fails if n is too large.

]["a longer example" ? {
... write(tab(4))
... snap()
... write(tab(7))
... snap()
... write(tab(10))
... snap()
... write(tab(0))
... snap()
... write(tab(12))
... snap()
... };
a l (write(tab(4))
&subject = a l o n g e r e x a m p l e
&pos = 4 |

ong (write(tab(7))
&subject = a l o n g e r e x a m p l e
&pos = 7 |

er (write(tab(10))
&subject = a l o n g e r e x a m p l e
&pos = 10 |

example (write(tab(0))
&subject = a l o n g e r e x a m p l e
&pos = 17 |

ample (write(tab(12))
&subject = a l o n g e r e x a m p l e
&pos = 12 |

Fundamentals of the Icon Programming Language Slide 159
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning—move vs. tab

Be sure to understand the distinction between tab and
move:

Use tab for absolute positioning.

Use move for relative positioning.

Example:

][&lcase ? { write(tab(3)); write(tab(3));
... write(move(3)); write(move(3)) };
ab

cde
fgh

Fundamentals of the Icon Programming Language Slide 160
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning—many(cs)

The built-in function many(cs) looks for one or more
occurrences of the characters in the character set cs.

many(cs)returns the position of the end of a run of one or
more characters in cs, starting at &pos.

For reference:

 x x y z . . .
| | | | | | | |
1 2 3 4 5 6 7 8

many in operation:

]["xxyz..." ? many('x');
 r := 3 (integer)

]["xxyz..." ? many('xyz');
 r := 5 (integer)

]["xxyz..." ? many('xyz.');
 r1 := 8 (integer)

]["xxyz..." ? { move(2); many('yz') };
 r2 := 5 (integer)

Note that many(cs) fails if the next character is not in cs:

]["xxyz..." ? many('.');
Failure

]["xxyz..." ? { move(1); many('yz') };
Failure

Fundamentals of the Icon Programming Language Slide 161
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

many(cs), continued

many is designed to work with tab—many produces an
absolute position in a string and tab sets &pos, the cursor, to
an absolute position.

For reference:

 x x y z . . .
| | | | | | | |
1 2 3 4 5 6 7 8

many and tab work together:

]["xxyz..." ? { p := many('xyz'); tab(p);
snap() };

&subject = x x y z . . .
&pos = 5 |

]["xxyz..." ? { tab(many('xyz')); snap() };
&subject = x x y z . . .
&pos = 5 |

]["xxyz..." ? { tab(many('xyz') + 2); snap()};
&subject = x x y z . . .
&pos = 7 |

Sometimes it is better to describe what is not being looked for:

]["xxyz..." ? { tab(many(~'.')); snap() };
&subject = x x y z . . .
&pos = 5 |

Fundamentals of the Icon Programming Language Slide 162
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning—upto(cs)

The built-in function upto(cs) generates the positions in
&subject where a character in the character set cs occurs.

]["bouncer" ? every write(upto('aeiou'));
2
3
6
Failure

A loop to print out vowels in a string:

]["bouncer" ? every tab(upto('aeiou')) do
... write(move(1));
o
u
e
Failure

A program to read lines and print vowels:

procedure main()
 while line := read() do {
 line ? every tab(upto('aeiou')) do
 write(move(1))
 }
end

When should upto be used with move, rather than tab?

Fundamentals of the Icon Programming Language Slide 163
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

upto vs. many

An attempt at splitting a string into pieces:

]["ab.c.xyz" ? while write(tab(upto('.'))) do
... move(1);
ab
c
Failure

A solution that works:

]["ab.c.xyz" ? while write(tab(many(~'.'))) do
... move(1);
ab
c
xyz
Failure

How could we make a list of the pieces?

How could we handle many dots, e.g., "ab...c..xyz"?

How could the upto('.') approach be made to work?

Fundamentals of the Icon Programming Language Slide 164
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning—upto(cs), continued

Consider a program to divide lines like this:

abc=1;xyz=2;pqr=xyz;

into pairs of names and values.

procedure main()
 while line := read() do {
 line ? while name := tab(upto('=')) do {

 move(1)
 value := tab(upto(';'))

 move(1)
 write("Name: ", name, ", Value: ",

value)
 }

 write()
 }
end

Interaction:

abc=1;xyz=2;pqr=xyz;
Name: abc, Value: 1
Name: xyz, Value: 2
Name: pqr, Value: xyz

a=1;b=2
Name: a, Value: 1
Name: b, Value: 1

What's wrong?

How can it be fixed?

Fundamentals of the Icon Programming Language Slide 165
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Pitfall: incomplete scope

A scanning expression with an incomplete scope can produce a
baffling bug.

Consider a routine to cut a string into pieces of length n, and
produce a list of the results:

procedure cut(s, n)
 L := []

 s ? while put(L, move(n)) # get next n chars
 put(L, tab(0)) # add leftover

return L
end

Execution:

][cut(&lcase, 10);
 r := L1:["abcdefghij","klmnopqrst",""]

Solution:

procedure cut(s, n)
 L := []
 s ? {

 while put(L, move(n))
 put(L, tab(0))

}
return L

end

Underlying mechanism: Scanning expressions can be nested.
Exiting a scanning expression restores the previous values of
&pos and &subject. (Initially 1 and "", respectively.)

Fundamentals of the Icon Programming Language Slide 166
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Review

Review of string scanning thus far:

Scanning operator:

 expr1 ? expr2

Sets &subject to the value of expr1 and sets &pos
to 1. When expr2 terminates, the previous values of
&subject and &pos are restored.

Functions for changing &pos:

 move(n) relative adjustment; string result
 tab(n) absolute adjustment; string result

Functions typically used in conjunction with tab(n):

 many(cs) produces position after run of characters in
cs.

 upto(cs) generates positions of characters in cs

Pitfalls:

many(cs) fails if the next character is not in cs.

Short scope on scanning expression causes unexpected
restoration of prior &subject and &pos values.

Fundamentals of the Icon Programming Language Slide 167
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning examples

A procedure to compress a series of dots into a single dot:

procedure compress(s)
 r := ""
 s ? {
 while r ||:= tab(upto('.')+1) do
 tab(many('.'))
 r ||:= tab(0)
 }

 return r
end

A test program:

procedure main()
 while ln := (writes("String? ") & read()) do {
 write(compress(ln))

 write()
 }
end

Interaction:

String? a..test...right......here
a.test.right.here

String? ..testing.....
.testing.

String?
.

Fundamentals of the Icon Programming Language Slide 168
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning examples, continued

Problem: Write a procedure rmchars(s, c) that removes all
characters in c from s. Example:

][rmchars("a test here", 'aieou');
 r := " tst hr" (string)

][rmchars("a test here", &letters);
 r := " " (string)

Problem: Write a procedure keepchars(s, c) that returns a
copy of s consisting of only the characters in c.

][keepchars("(520) 577-6431", &digits);
 r := "5205776431" (string)

Fundamentals of the Icon Programming Language Slide 169
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning examples, continued

Problem: Write a routine expand(s) that does simple run-
length expansion:

][expand("x3y4z");
 r := "xyyyzzzz" (string)

][expand("5ab0c");
 r := "aaaaab" (string)

][*expand("1000a1000bc");
 r := 2001 (integer)

Assume the input is well-formed.

Fundamentals of the Icon Programming Language Slide 170
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning examples, continued

Problem: Write a procedure fname(path) that accepts a
UNIX path name such as /x/y/z.c, ../a/b/.init, or
test_net, and returns the file name component.

Problem: Make up a string scanning problem and solve it.

Fundamentals of the Icon Programming Language Slide 171
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning examples, continued

Problem: Write a program that reads the output of the who
command and produces a list of users sorted by originating host.

Once upon a time, who output looked like this:

whm pts/1 Feb 21 19:54 (mesquite.CS.Arizona.EDU)
cpilson pts/228 Feb 21 20:30 (tuc-ts1-8.goodnet.com)
nicko pts/62 Feb 20 07:44 (raleigh.CS.Arizona.EDU)
deepakl pts/2 Feb 20 00:17 (italic.CS.Arizona.EDU)
ilwoo pts/7 Feb 15 04:51 (folio.CS.Arizona.EDU)
siva pts/135 Feb 21 21:37 (pug.CS.Arizona.EDU)
rajesh pts/9 Feb 14 14:24 (astra.CS.Arizona.EDU)
muth pts/8 Feb 19 09:18 (granjon.CS.Arizona.EDU)
butts pts/111 Feb 21 20:41 (nomi)
ganote pts/153 Feb 21 20:25 (lectura.CS.Arizona.EDU)
...

Desired output format:

rajesh astra.CS.Arizona.EDU
ilwoo folio.CS.Arizona.EDU
muth granjon.CS.Arizona.EDU
deepakl italic.CS.Arizona.EDU
ganote lectura.CS.Arizona.EDU
whm mesquite.CS.Arizona.EDU
butts nomi
siva pug.CS.Arizona.EDU
nicko raleigh.CS.Arizona.EDU
cpilson tuc-ts1-8.goodnet.com

Restriction: You can't use sortf.

Fundamentals of the Icon Programming Language Slide 172
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning examples, continued

who output format:

whm pts/1 Feb 21 19:54 (mesquite.CS.Arizona.EDU)

A solution:

procedure main()
 who := open("who", "rp") # open pipe to read

 lines := []
 while line := read(who) do {
 line ? {
 user := tab(many(~' '))
 tab(many(' ')) # (A)
 term := tab(many(~' '))
 tab(many(' '))
 time := move(12) # (B)
 tab(upto('(') + 1)
 sys := tab(upto(')'))
 }
 put(lines, sys || "\x00" ||

left(user,15) || sys)
 }

 every line := !sort(lines) do
 line ? {

tab(upto('\x00')+1)
write(tab(0))
}

end

Shortcut: Since term and time aren't used, lines (A) through
(B) could be deleted.

Fundamentals of the Icon Programming Language Slide 173
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning—find(s)

The built-in function find(s) generates the positions in
&subject (starting at &pos) where the string s begins.

]["infringing on infinity" ? {
... every posn := find("in") do
... write(posn)
... };
1
5
8
15
18
Failure

A fragment to print lines on standard input that contain "error"
at or beyond position 10:

while line := read() do {
 line ? if (p := find("error")) >= 10 then
 write("Found at ", p)
 else
 write("Not found")
 }

Interaction:

1234567890
Not found
an error here
Not found
here is another error
Found at 17
error error error
Found at 13

Fundamentals of the Icon Programming Language Slide 174
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning—find(s), continued

A different approach for the previous example:

while line := read() do {
 line ? if tab(10) & p := find("error") then
 write("Found at ", p)
 else
 write("Not found")
 }

Problem: Write a program anyof to print lines that contain any
of the strings named as command line arguments. Example:

% anyof read write < (code above)
while line := read() do {
 write("Found at ", p)
 write("Not found")

Fundamentals of the Icon Programming Language Slide 175
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning—find(s), continued

A routine to replace one text string with another:

procedure replace(s, from_str, to_str)
 new_str := ""

 s ? {
 while new_str ||:= tab(find(from_str)) do {
 new_str ||:= to_str
 move(*from_str)
 }
 new_str ||:= tab(0)
 }

 return new_str
end

Example:

replace("to be or not to be", "be", "eat")

Fundamentals of the Icon Programming Language Slide 176
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Standalone use of find

find actually accepts four arguments:

find(s1, s2, i1, i2)

It generates the locations of s2 between positions i1 and i2
where s1 occurs. These defaults are used:

s2 &subject
i1 &pos if s2 defaulted, 1 otherwise
i2 0

Example:

][every write(find("in", "infinite"));
1
4
Failure

Another version of the anyof program:

procedure main(args)
 while line := read() do {
 if find(!args,line) then
 write(line)
 }
end

Fundamentals of the Icon Programming Language Slide 177
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning—match(s)

The built-in function match(s) succeeds if the string s
appears next.

]["infinite" ? match("in");
 r := 3 (integer)

]["infinite" ? tab(match("in"));
 r := "in" (string)

]["finite" ? tab(match("in"));
Failure

]["finite" ? { move(3); tab(match("it"));
 write(tab(0)) };
e
 r := "e" (string)

The expression tab(match(s)) is very common; =s is a
synonym for it:

]["infinite" ? ="in";
 r := "in" (string)

]["mat" ? =(!"cmb"||"at");
 r := "mat" (string)

Like find, match accepts four arguments, with defaults for
the last three. It is commonly used to see if a string is a prefix
of another:

if match("procedure"|"global", line) then ...

Fundamentals of the Icon Programming Language Slide 178
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Problem: Comment stripper

Write a program that strips comments from Java source code. It
should handle both forms (// and /* ... */). Ignore the
potential of string literals having the sequences of interest.

Fundamentals of the Icon Programming Language Slide 179
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning—pos(n)

The built-in function pos(n) succeeds if &pos is equivalent to
n. Either a right- or left-running position may be specified.

Here is a program that reads standard input and prints non-blank
lines:

procedure main()
 while line := read() do
 line ?
 if not (tab(many(' \t')) & pos(0)) then
 write(line)
end

Question: Is the pos function really needed? Why not just
compare to &pos?

Problem: What are two shorter solutions that don't use
scanning?

Fundamentals of the Icon Programming Language Slide 180
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

String scanning—any(cs)

The built-in function any(cs) succeeds if the next character is
in the character set cs. &pos+1 is returned if successful.

A procedure to see if a string consists of a digit followed by a
capital letter, followed by a digit:

procedure NCN(s)
 s ? {
 *s = 3 &
 tab(any(&digits)) &
 tab(any(&ucase)) &
 tab(any(&digits)) &
 return }
end

A driver:

while line := (writes("String? ") & read()) do
 if NCN(line) then
 write("ok")
 else
 write("not ok")

Interaction:

String? 8X1
ok
String? 9x2
not ok
String? 4F22
not ok

Question: How could pos() be used in this procedure?

Fundamentals of the Icon Programming Language Slide 181
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Summary of string scanning functions

Functions for changing &pos:

 move(n) relative adjustment; string result
 tab(n) absolute adjustment; string result

Functions typically used in conjunction with tab(n):

 many(cs) produces position after run of characters in cs
 upto(cs) generates positions of characters in cs
 find(s) generates positions of s
 match(s) produces position after s, if s is next
 any(cs) produces position after a character in cs

Other functions:

 pos(n) tests if &pos is equivalent to n

 bal(s, cs1, cs2, cs3)
similar to upto(cs), but used for working with
"balanced" strings. (Not covered; included for
completeness.)

The functions any, find, many, match, and upto each
accept four arguments, the last three of which default:

<fcn>(s1, s2, i1, i2)

Fundamentals of the Icon Programming Language Slide 182
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Problem: is_assign(s)

Problem: Write a procedure is_assign(s) that succeeds
iff s has the form <identifier>=<integer>.

][is_assign("x4=10");
 r := 6 (integer)

][is_assign("4=10");
Failure

][is_assign("abc=10x");
Failure

][is_assign("_123=456");
 r := 9 (integer)

][is_assign("_123 = 456");
Failure

Fundamentals of the Icon Programming Language Slide 183
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

split.icn

This is the source for split:

procedure split(s, dlms, keepall)
 local w, ws, addproc, nullproc

 ws := []
 /dlms := ' \t'

 addproc := put
 if \keepall then
 otherproc := put
 else
 otherproc := 1

 if dlms := (any(dlms, s[1]) & ~dlms) then
 otherproc :=: addproc

 s ? while w := tab(many(dlms := ~dlms)) do {
 addproc(ws, w)
 otherproc :=: addproc
 }

 return ws
end

Two test cases:

" just a test right here "

"while w := tab(many(dlms := ~dlms)) do"

Fundamentals of the Icon Programming Language Slide 184
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Backtracking with scanning

Consider this:

]["scan this" ? every i := 1 to 10 do
 write(tab(i));

s
c
a
n

t
h
i
s
Failure

And this:

]["scan this" ? every write(tab(1 to 10));

s
sc
sca
scan
scan
scan t
scan th
scan thi
scan this
Failure

What's going on?

Fundamentals of the Icon Programming Language Slide 185
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Backtracking with scanning, continued

In fact, tab()is a generator.

A simple approximation of tab(n):

procedure Tab(n)
 oldpos := &pos
 &pos := n
 suspend &subject[oldpos:n]
 &pos := oldpos
end

Resumption of tab undoes any change to &pos.

move(n) is also a generator, changing &pos, suspending,
and restoring the old value if resumed.

In essence, any tab's and move's in a failing expression are
undone.

tab(upto(...)) & ="..." & move(...) &
s := tab(many(...)) & p1(...)

Fundamentals of the Icon Programming Language Slide 186
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Backtracking with scanning, continued

Note the difference between bounded and unbounded
tab(...) calls:

]["abc 123" ? {
 tab(many(&letters))
 tab(many(&digits))
 snap()
 };
&subject = a b c 1 2 3
&pos = 4 |

]["abc 123" ? {
 tab(many(&letters)) &
 tab(many(&digits))
 snap()
 };
&subject = a b c 1 2 3
&pos = 1 |

Two more cases:

]["abc123" ? { tab(many(&letters)) &
 tab(many(&digits))
 snap() };
&subject = a b c 1 2 3
&pos = 7 |

]["123" ? { tab(many(&letters)) &
 tab(many(&digits))
 snap() };
&subject = 1 2 3
&pos = 1 |

Fundamentals of the Icon Programming Language Slide 187
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Backtracking in scanning, continued

Here's a program that recognizes time duration specifications
such as "10m" or "50s":

procedure main(args)
 while line := (writes("String? "),read()) do
 line ?
 if tab(many(&digits)) & move(1) == !"ms" &
 pos(0) then write("yes")
 else write("no")
end

Interaction:

String? 10m
yes
String? 50s
yes
String? 100
no
String? 30x
no

Fundamentals of the Icon Programming Language Slide 188
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Backtracking in scanning, continued

A revision that also recognizes specifications such as
"10:43" or "7:18":

procedure main()
 while line := (writes("String? "), read()) do
 line ?
 if (Nsecs() | mmss()) & pos(0) then
 write("yes")
 else
 write("no")
end

procedure Nsecs()
 tab(many(&digits)) & move(1) == !"ms" &
 return
end

procedure mmss()
 mins := tab(many(&digits)) & =":" &
 nsecs := tab(many(&digits)) &
 *nsecs = 2 & return
end

Interaction:

String? 10m
yes
String? 9:41
yes
String? 8:100
no
String? 100x
no

Fundamentals of the Icon Programming Language Slide 189
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Backtracking in scanning, continued

Imagine a program that looks for duration specifications and
marks them:

% cat mark.1
The May 30 tests showed durations
between 75s and 2m. Further analysis
revealed the span to be 1:14 to 2:03.
%
%
% mark < mark.1
The May 30 tests showed durations

between 75s and 2m. Further analysis
 ^^^ ^^
revealed the span to be 1:14 to 2:03.
 ^^^^ ^^^^
%

The code:

procedure main()
 while line := read() do {
 write(line)
 markline := repl(" ", *line)
 line ? while skip := tab(upto(&digits)) do {
 start := &pos
 ((Nsecs|mmss)() &
 len := &pos - start &
 markline[start+:len] := repl("^", len)) |
 tab(many(&digits))
 }
 write(markline)
 }
end

Nsecs() and mmss() are unchanged.

Fundamentals of the Icon Programming Language Slide 190
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Backtracking in scanning, continued

Problem: Write a program that reads Image() output and
removes the list labels.

Example:

% cat samples
r := L1:[1,2,3] (list)
r := L1:[1,L2:[2],L3:[L4:[3,4]]] (list)
r := L1:[L2:[],L2,L2,L2,L2] (list)
%
% cleanlx < samples
r := [1,2,3] (list)
r := [1,[2],[[3,4]]] (list)
r := [[],L2,L2,L2,L2] (list)
%

Fundamentals of the Icon Programming Language Slide 191
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Example: Recognizing phone numbers

Consider the problem of recognizing phone numbers in a
variety of formats:

555-1212
(520) 555-1212
520-555-1212
<any of the above formats> x <number>

This problem can be approached by using procedures that
execution can backtrack through.

Here is a procedure that matches a series of N digits:

procedure digits(N)
 suspend (move(N) -- &digits) === ''
end

If a series of N digits is not found, digits(N) fails and the
move is undone:

]["555-1212" ? { digits(3) & snap() } ;
&subject = 5 5 5 - 1 2 1 2
&pos = 4 |

]["555-1212" ? { digits(4) & snap() } ;
Failure

Fundamentals of the Icon Programming Language Slide 192
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Phone numbers, continued

For reference:

procedure digits(N)
 suspend (move(N) -- &digits) === ''
end

Using digits(N) we can build a routine that recognizes
numbers like 555-1212:

procedure Local()
 suspend digits(3) & ="-" & digits(4)
end

If Local() is resumed, the moves done in both digits()
calls are undone:

]["555-1212" ? { Local() & snap() } ;
&subject = 5 5 5 - 1 2 1 2
&pos = 9
 |
]["555-1212" ? { Local() & snap("A") & &fail;
 snap("B") } ;
A
&subject = 5 5 5 - 1 2 1 2
&pos = 9 |
B
&subject = 5 5 5 - 1 2 1 2
&pos = 1 |

IMPORTANT:
Using suspend, rather than return, creates this behavior.

Fundamentals of the Icon Programming Language Slide 193
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Phone numbers, continued

Numbers with an area code such as 520-555-1212 are
recognized with this procedure:

procedure ac_form1()
 suspend digits(3) & ="-" & Local()
end

The (520) 555-1212 case is handled with these routines:

procedure ac_form2()
 suspend ="(" & digits(3) & =")" &
 optblank() & Local()
end

procedure optblank()
 suspend =(" "|"")
end

All three forms are recognized with this procedure:

procedure phone()
 suspend Local() | ac_form1() | ac_form2()
end

Fundamentals of the Icon Programming Language Slide 194
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Phone numbers, continued

A driver:

procedure main()
 while writes("Number? ") &
 line := read() do {
 line ? if phone() & pos(0) then
 write("yes")
 else
 write("no")
 }
end

Usage:

% phone
Number? 621-6613
yes
Number? 520-621-6613
yes
Number? 520 621-6613
no
Number? (520) 621-6613
yes
Number? (520) 621-6613
no
Number? 555-1212x
no

Fundamentals of the Icon Programming Language Slide 195
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Phone numbers, continued

Problem: Extend the program so that an extension can be
optionally specified on any number. All of these should
work:

621-6613 x413

520-621-6613 x413

(520)621-6613 x 27

520-555-1212

621-6613x13423

Fundamentals of the Icon Programming Language Slide 196
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Co-expression basics

Icon's co-expression type allows an expression, usually a
generator, to be "captured" so that results may be produced
as needed.

A co-expression is created using the create control
structure:

create expr

Example:

][c := create 1 to 3;
 r := co-expression_2(0) (co-expression)

A co-expression is activated with the unary @ operator.

When a co-expression is activated the captured expression is
evaluated until a result is produced. The co-expression then
becomes dormant until activated again.

][x := @c;
 r := 1 (integer)

][y := @c;
 r := 2 (integer)

][z := x + y + @c;
 r := 6 (integer)

][@c;
Failure

Activation fails when the captured expression has produced
all its results.

Fundamentals of the Icon Programming Language Slide 197
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Co-expression basics, continued

Activation is not generative. At most one result is produced
by activation:

][vowels := create !"aeiou";
 r := co-expression_6(0) (co-expression)

][every write(@vowels);
a
Failure

Another example:

][s := "It is Hashtable or HashTable?";
 r := "It is Hashtable or HashTable?"

][caps := create !s == !&ucase;
 r := co-expression_3(0) (co-expression)

][@caps;
 r := "I" (string)

][cc := @caps || @caps;
 r := "HH" (string)

][[@caps];
 r := ["T"] (list)

][[@caps];
Failure

Fundamentals of the Icon Programming Language Slide 198
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Co-expression basics, continued

Co-expressions can be used to perform generative
computations in parallel:

][upper := create !&ucase;
 r := co-expression_4(0) (co-expression)

][lower := create !&lcase;
 r := co-expression_5(0) (co-expression)

][while write(@upper, @lower);
Aa
Bb
Cc
Dd
...

Here is a code fragment that checks the first 1000 elements
of a binary number generator:

bvalue := create binary() # starts at "1"

every i := 1 to 1000 do
 if integer("2r"||@bvalue) ~= i then
 stop("Mismatch at ", i)

Fundamentals of the Icon Programming Language Slide 199
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Co-expression basics, continued

The "size" of a co-expression is the number of results it has
produced.

][words := create !split("just a test");
 r := co-expression_5(0) (co-expression)

][while write(@words);
just
a
test
Failure

][*words;
 r := 3 (integer)

][*create 1 to 10;
 r := 0 (integer)

Problem: Using a co-expression, write a program to produce
a line-numbered listing of lines from standard input.

Fundamentals of the Icon Programming Language Slide 200
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Example: vcycle

This program uses co-expressions to conveniently cycle
through the elements in a list:

procedure main()
 vtab := table()

 while writes("A or Q: ") & line := read() do {
 parts := split(line,'=')

 if *parts = 2 then {
 vname := parts[1]
 values := parts[2]

 vtab[vname] :=
 create |!split(values, ',')
 }
 else
 write(@vtab[line])
 }
end

Interaction:

% vcycle
A or Q: color=red,green,blue
A or Q: yn=yes,no
A or Q: color
red
A or Q: color
green
A or Q: yn
yes
A or Q: color
blue
A or Q: color
red

Problem: Get rid of those integer subscripts!

Fundamentals of the Icon Programming Language Slide 201
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

"Refreshing" a co-expression

A co-expression can be "refreshed" with the unary ^ (caret)
operator:

][lets := create !&letters;
 r := co-expression_4(0) (co-expression)

][@lets;
 r := "A" (string)

][@lets;
 r := "B" (string)

][rlets := ^lets;
 r := co-expression_5(0) (co-expression)

][*rlets;
 r := 0 (integer)

][@lets;
 r := "C" (string)

][@rlets;
 r := "A" (string)

In fact, the "refresh" operation produces a new co-
expression with the same initial conditions as the operand.

"refresh" better describes this operation:

][lets := ^lets;
 r := co-expression_6(0) (co-expression)

][@lets;
 r := "A" (string)

Fundamentals of the Icon Programming Language Slide 202
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Co-expressions and variables

The environment of a co-expression includes a copy of all
the non-static local variables in the enclosing procedure.

][low := 1;

][high := 10;

][c1 := create low to high;

][low := 5;

][c2 := create low to high;

][@c1;
 r := 1 (integer)

][@c2;
 r := 5 (integer)

][@c2;
 r := 6 (integer)

Refreshing a co-expression restores the value of locals at the
time of creation for the co-expression:

][low := 10;
][c1 := ^c1;

][c2 := ^c2;

][@c1;
 r := 1 (integer)

][@c2;
 r := 5 (integer)

Fundamentals of the Icon Programming Language Slide 203
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Co-expressions and variables, continued

Because structure types such as lists use reference semantics,
using a local variable with a list value leads to "interesting"
results:

][L := [];
 r := [] (list)

][c1 := create put(L, 1 to 10) & L;
 r := co-expression_8(0) (co-expression)

][c2 := create put(L, !&lcase) & L;
 r := co-expression_9(0) (co-expression)

][@c1;
 r := [1] (list)

][@c1;
 r := [1,2] (list)

][@c2;
 r := [1,2,"a"] (list)

][@c1;
 r := [1,2,"a",3] (list)

Fundamentals of the Icon Programming Language Slide 204
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Procedures that operate on co-expressions

Here is a procedure that returns the length of a co-
expression's result sequence:

procedure Len(C)
 while @C
 return *C
end

Usage:

][Len(create 1 to 10);
 r := 10 (integer)

][Len(create !&cset);
 r := 256 (integer)

Problem: Write a routine Results(C) that returns the
result sequence of the co-expression C:

][Results(create 1 to 5);
 r := [1,2,3,4,5] (list)

Fundamentals of the Icon Programming Language Slide 205
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

PDCOs

By convention, routines like Len and Results are called
programmer defined control operations, or PDCOs.

Icon provides direct support for PDCOs with a convenient
way to pass a list of co-expressions to a procedure:

proc{expr1, expr2, ..., exprN} # Note: curly braces!

This is a shorthand for:

proc([create expr1, ..., create exprN])

Revised usage of Len and Results:

][Len{!&lcase};
 r := 26 (integer)

][Results{1 to 5};
 r := [1,2,3,4,5] (list)

Revised version of Len:

procedure Len(L)
 C := L[1]

 while @C
 return *C
end

Fundamentals of the Icon Programming Language Slide 206
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

PDCOs, continued

Imagine a PDCO named Reduce that "reduces" a result
sequence by interspersing a binary operation between
values:

][Reduce{"+", 1 to 10};
 r := 55 (integer)

][Reduce{"*", 1 to 25};
 r := 15511210043330985984000000 (integer)

][Reduce{"||", !&lcase};
 r := "abcdefghijklmnopqrstuvwxyz" (string)

Implementation:

procedure Reduce(L)
 op := @L[1]

result := @L[2] | fail

while result := op(result,@L[2])

return result
end

Fundamentals of the Icon Programming Language Slide 207
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

PDCOs, continued

Problem: Write a PDCO that interleaves result sequences:

][.every Interleave{1 to 3, !&lcase,
 ![10,20,30,40]};
 1 (integer)
 "a" (string)
 10 (integer)
 2 (integer)
 "b" (string)
 20 (integer)
 3 (integer)
 "c" (string)
 30 (integer)

Interleave should fail upon the first occurrence of an
argument expression failing.

Fundamentals of the Icon Programming Language Slide 208
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Modeling control structures

Most of Icon's control structures can be modeled with a
PDCO. Example:

procedure Every(L)
 while @L[1] do @^L[2]
end

A simple test: (Note that iand c are globals.)

global i,c
procedure main()

 Every{i := 1 to 5, write(i)}

 Every{i := ![10, 20, 30],
 Every{c := !"abc", write(i, " ", c)}}
end

Output:

1
2
3
4
5
10 a
10 b
10 c
20 a
20 b
20 c
30 a
30 b
30 c

Fundamentals of the Icon Programming Language Slide 209
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Modeling control structures, continued

Here is a model for limitation from pdco.icn in the Icon
Procedure Library:

procedure Limit(L)
 local i, x

 while i := @L[2] do {
 every 1 to i do
 if x := @L[1] then suspend x
 else break
 L[1] := ^L[1]
 }
end

Usage:

][.every Limit{!"abc", 1 to 3};
 "a" (string)
 "a" (string)
 "b" (string)
 "a" (string)
 "b" (string)
 "c" (string)

][.every !"abc" \ (1 to 3);
 "a" (string)
 "a" (string)
 "b" (string)
 "a" (string)
 "b" (string)
 "c" (string)

Fundamentals of the Icon Programming Language Slide 210
W. H. Mitchell (whm@MitchellSoftwareEngineering.com)

Modeling control structures, continued

Problem: Model the if and while control structures.
Here's a test program:

global line, sum
procedure main()
 sum := 0

 While{line := read(),
 If{numeric(line), sum +:= line}}

 write("Sum: ", sum)
end

Here are the bounding rules:

while expr1 do expr2
if expr1 then expr2

Restriction: You can't use a control structure in its own
model.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211

